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1. Preface

A key 1ssue in many scientific problems 1s the solution of linear equations
Tr=y. (1.1)

The unknown z in (1.1) may either be the solution of the entire problem or some
intermediate quantity, as 1s the case, for example, when solving a nonlinear problem
by Newton-type methods.

Wthile T is typically a bounded operator between Hilbert spaces X and Y, the
dependency y — 2 is not always continuous, in which case (1.1) is called #/{-posed. This
notion, which goes back to lectures by HADAMARD [33] from 1923, originated from the
philosophy that a solution of such a problem cannot have a well defined physical sense.
In the meantime, however, several important applications from natural sciences — so-
called inverse problems— have made the study of ill-posed problems an essential task of
applied mathematics. This is illustrated, for example, by the rapidly growing number
of publications in the field, <f., e.g., the conference proceedings [72, 83, 79, 2, 66, 17],
to name just a few. In most of these applications the existence of a solution follows
from physical considerations; however, z does not need to be uniquely defined by
(1.1), in case T has a nontrivial nullspace A'{T'). Therefore one typically searches the
unique solution z = Tty in X of minimal norm; the linear map T is the generalized
inverse of T'. Notice that ill-posedness is equivalent to TT being unbounded.

The most often cited class of examples for ill-posed problems constitutes of Fred-
holm integral equations of the first kind with non-degenerate kernel function. The
corresponding integral operator 7' is compact, and its singular values cluster at the
origin. From the minmax principle for the singular values one easily concludes that
T' is unbounded.

In practice the data y are rarely given exactly; instead, due to measurement errors,
modelling errors and such, there is some inherent noise in the data. In view of the
discontinuity of T'f, straightforward inversion of (1.1) is therefore not recommend-
ed. More sophisticated algorithms for solving ill-posed problems go back to the early
sixties, when TIKHONOV [77] derived the concept of regularization. Roughly speak-
ing, the idea behind regularization is to balance approximation error and propagated
data error; in other words, in order to prevent unbounded magnification of the da-
ta error, one has to put up with a limited degree of approximation. This degree of
approximation — let it be measured by some number ¢ > 0 — is a free parameter,
the regularization parameter. If {y®}s.0 denotes a sequence of perturbed data with
|y — ¥*|| <4, then one would like to choose € in such a way that



2o =z (T, 8) — o = Ty as & = 0.

In principle, every scheme of numerical approximation may serve as underlying rule
for constructing z.: typically, z. = R.y’, where {R.}.-o are (possibly nonlinear)
operators converging pointwise to T on the range R(T) as ¢ — 0. For example, in
Tikhonov regularization,

R. = (T*T + eIy 'T™, e>0, (1.2)

where 7% : ¥ — X is the adjoint operator of T'. In other words, =, is the solution of
the damped normal equation

(T*T + Dz, = Ty

The crux of the matter is the practical choice of the regularization parameter for a
fixed data set y°. The optimal parameter, i.e., the one which minimizes || R,y —7"Ty||, is
impossible to determine since the exact solution is not known; instead one may ask for
asymptotically optimal rate of convergence of z, — Ty as § — 0. Although this rate
of convergence is arbitrarily slow in general, it can be estimated given certain a priori
information about the exact solution. A typical assumption used in the mathematical
literature is stated in Assumption 3.6 below. Depending on a parameter g > 0, this
assumption enables convergence rates

HIE{Tﬂ yav 5) - Tty” = O(aﬂ/#.‘r!): &—=10 3

which are best possible in some uniform sense. A regularization method which realizes
the above convergence rate is called order-opiimal (for ). The interested reader will
find more details on the basic philosophies and theoretical grounds of regularization
methods in [30, 82, 54, 16].

For a long time, Tikhonov regularization has been the one and only alternative
for solving ill-posed problems. However, its numerical implementation can be rather
expensive, in particular when it becomes necessary to compute approximations for sev-
eral different regularization parameters. Note that a linear system with a selfadjoint,
positive definite matrix has to be inverted for each choice of ¢. For this reason direci
approaches for solving the discrete problem usnally fail for higher dimensional appli-
cations from natural sciences for the lack of computer time and storage restrictions.
Instead, the damped normal equation is often solved by some iterative technique, e.g.,
by the method of conjugate gradients.

On the other hand, iterative methods have an inherent regularizing property when
applied straight to problem {1.1). Although the iterates z; = z(7T,3°,8) diverge as
k — oo when the perturbed data ° do not belong to the domain of T, the data
error propagation remains limited in the beginning of the iteration. The quality of
the optimal approximation therefore depends on how many iterative steps can be
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performed until the iterates lurn to diverge. This phenomenon — convergence in the
beginning of the iteration, divergence cventually — has been called semiconvergence in
[67]. The idea is now to stop the iteration at about the point where divergence sets in.
In other words, the iteration count is the regularization parameter which remains to
be controlled by an appropriate stopping rule. Notice how approximation error and
propagated data error are balanced in this way.

NEMIROVSKII [H8] was the first to come up with a rigorous treatment of the reg-
ularizing properties of the conjugate gradient method applied to T*Tz = T*y; he
suggested the discrepancy principle (cf. Stopping Rule 3.10) for determining an ap-
propriate regularization parameter k. Chapter 3 is essentially following his analysis to
prove order-optimality of this stopping rule. When T itself is selfadjoint and semidef-
inite one might prefer to avoid the detour via the normal cquation, and apply the
conjugate gradient mecthod straight to the original equation (1.1). NEMIROVSKII's
technique can not be used in this case, nor does il apply to the minimal error method
proposed by KING [47] (a variant of conjugate gradients for the normal equation).
Chapter 4 presents an adequate stopping rule (different from the discrepancy princi-
ple) for these two situations, and analyzes its convergence properties.

The basic tools to be used throughout this book are the same as in [58}, namely ele-
mentary properties of orthogonal polynomials over R; the corresponding orthogonality
measures are induced by the spectral decomposition of the underlying selfadjoint op-
crator T or TT*, respectively. The major emphasis is on the case when T is selfadjoint
and semidefinite; however, the analysis is not restricted to this special case: all results
have their natural analog for the alternative algorithms based on the normal equation
as will be outlined in Section 2.3 and clarified in several remarks scattered throughout
the entire text.

The brief outline of the following chapters is as follows. Basic facts about conju-
gate gradient type methods including the most important algorithms are presented
in Chapter 2. Chapters 3 and 4 derive the regularizing properties of a family of con-
jugate gradient type methods for semidefinite problems: those which can be treated
by NEMIROVSKI!’s techniques are considered in Chapter 3; the conjugate gradient
method applied to {1.1) and the minimal error method for the normal equation (which
cannot be analyzed in this way) are studied in Chapter 4. Each of these chapters deals
with the following three major questions:

¢ under what conditions converges/diverges the iteration as the iteration index
goes to infinity 7

e given the noise level 4 in the data, how can the stopping index be chosen such
that the approximations of Tty arc order-optimal ?

o are Lhere heuristic stopping rules for the case that no information about the
noise level ¢ is known 7



listimates for the number of iterations until the stopping criterium is met are given in
Chapter 5. Section 5.3 contains numerical experiments with an ill-posed deconvolution
problemn arising in image reconstruction. Finally, Chapter 6 deals with an extension
of the former results to selfadjoint indefinite problems. A number of modifications
are necessary in this context, but the major conclusions remain valid. Nevertheless,
the theory for indefinite problems is not as completc as for the semidefinite case. It
should be stressed that the extension to indefinite problems is not for purely academic
reasons; iwo applications where the indefinite algorithms perform significantly better
are presented in Section 6.7.

Bibliographical notes concerning the presented results and references to related
works are surnmarized at the end of each chapter. Af this point it should be emphasized
that much of the work on conjugate gradient type methods for ill-posed problems
originated from the Russian literature; although I have tricd to gather as many Russian
papers and monographs as possible, the list of references may not include all important
contributions. I would like to thank Dr. Robert Plato who provided me with a number
of original sources.

This book is an outgrowth of my habilitation thesis “Regularization of ill-posed
problems by conjugate gradient type methods”, but it contains a significant portion
of additional material including, in particular, the whole chapter on indefinite prob-
lems. I want to use the occasion to acknowledge the aids [ received from Professor
Dr. W. Niethammer in particular, but also from my colleagues during the years of my
habilitation at the University of Karlsruhe. Furthermore, | am grateful to 'rofessor
Dr. H. W. Engl and Professor C. W. Groetsch for their encouragement and support
to publish this book.



Notation

Some notation has already been introduced: || - || and {-,-) denote norm and inner
product in X and }, respectively; which of the two spaces is concerned is always
clear from the context. Besides, the maximum norm over the interval [a, 8] is denoied
by || - ||las)- The operator T has null space A (T) and range R(T), P dcnotes the
orthoprojector onto the closure of R{7"). T is the (Moore-Penrose) generalized inverse
of T; for a formal definition of Tt and a discussion of its continuity, cf. [29]. The domain
of T7 is denoted by D(T1). If not said otherwise, T' is assumed to be selfadjoint,
positive semidefinite with its spectrum contained in [0, 1]; obviously, (1.1) can always
be rescaled to guarantee ||T|| < 1. The spectral decomposition of 7' (cf. {71]) defines a
spectral family of orthogonal projectors {E,}; as usual, E, is defined ta be continuous
from the right. If @(A) is a nondecreasing distribution function with a jump at A =0
then the integrals ;... de(A) and [... de(A) include the contribution coming from
this jump al the origin; otherwise, the notations [y, and [°~ will be used.

The lollowing list refers Lo the definition of other symbols which have a fixed
meaning throughout the entire text:

K Section 2.1 & Section 6.2
I, 17 Section 2.1 ¥ (6.14)
me (6.4) £ (2.12)
PhsGrm1 (2.2) Tkn  Proposition 2.5
[ ]a (2.5) 0rn Proposition 2.8
pEj"] (2.6) w,w  Assumption 3.6
ul™ (6.8) i Assumption 3.6
)«E"’,]c (2.193 7  Stopping Rules 3.10, 4.7
Arg. g Section 6.2 p (3.12), (6.37)
Ab k (6.24) Ps, 0, Theorems 3.14, 4.11
Er (6.26) or  Corollary 6.2
Tt (2.15) e (3.25), (4.26), (6.55)
R Proposition 2.10 v (3.29)
28 Section 3.3 9, (4.11)

Many results in this work have an asyruptotic nature. Besides the usual Landau
symbols o(-) and O(-), two notations will be used. Let {a:} and {bz} be nonnegative
scquences: then

g ~ by, E— oo,
if and only if there are positive constants ¢; and ¢y with eiby < ap < czbg for all &
sufficiently large; on the other hand,



akibk, k—)OO,

if and only if b, # 0 for k sufficiently large, and a; /b, — 1 as & — co. Further on, the
letter ¢ always denotes a generic posilive constant, i.e., ¢ may be attached to different
constants at different places, but always independent of the variables in question.

A common feature in the theory of ill-pesed problems is the occurrence of frac-
tional powers as, e.g., in §'/2#*2, For notational convenicnce (and for the ease of the
reader) paranthesis around the denominator are omitted throughout the entire text:
everything following “/” belongs to the denominator. In other words, the correct
notation for the above formula would have been §!/(2#+2),



2. Conjugate Gradient Type Methods

This preliminary chapter starts with a general description of Krylov subspace methods
(also called polynomial iteration methods) and introduces the particular definition of
what will further on be called conjugate gradient type methods; the most important
algorithms are presented in slightly more detail. Conjugate gradient type methods
may be viewed as optimization techniques or as projection methods. Alternatively,
they can be studied from an orthogonal polynomial point of view, and this is the
framework which is chosen in the following chapters. As can be seen in Section 2.4,
many elemenlary propertics of real orthogonal polynomials have interesting implica-
tions on conjugale gradient type methods. One consequence, for example, is a way of
implementing two “adjacent” conjugate gradient type methods with essentially the
same costs as implementing only one scheme; this is shown in Section 2.5, The final
section of this chapter deals with the stability of the numerical algorithms. One as-
pect is the loss of orthogonality due to finite precision arithmetic, and its lipact on
the performance of the methods; another point is the sensitivily with respect to data
perturbations after a fixed number of steps. The operator which maps the right-hand
side onto the corresponding iterate is nonlinear and may be discontinuous, but discon-
tinuity is restricted to a small set, i.c., a set of first category. Except for Section 2.3,
T is always assumed to be selfadjoint, semidefinite, with its spectrum contained in
[0, 1].

2.1 Krylov subspace methods

At step k£ > 1, a Krylov subspace method sclects an approximation x; of the solution
z of (1.1) from the shifted Krylov space zo + Ki(y — Tzo; T); here, 4 is some initial
guess of Iy, and the kth Krylov subspace Xr(z; T') is defined as the linear spacc

Kilz;T) = span{z, Tz, T%,..., T '2}.

Expanding zx — xo in terms of the spanning elements of the Krylov subspace, the
coeflicients of a polynomial gxy € [l 1 (the space of polvnomials of degree k — L;
117 = {0}) are lound such thal

i = 2o+ @1 (T)(y — Txo}. (2.1)

Associated with this sequence {qr_1} of #teralion polynomials is another sequence
ol polynomials {px} given by



Pe(A) =1 = Ager(A). (2.2)

Obviously, pr € I7¢, where {1 denotes the set of normalized polynomials of degree k,
je.,

U = {p e | p(0) =1}

pr 18 called residual polynomial since the residual y — T'xy, satisfies

y—Tapy = y—T{wo+qe1(T)(y — Txo))
y—Txo— Tgpr(T)y — Tan)
(I = Tge{T))y — Tro)

= pl(T)y — Tzo).

Moreover, if y € R(T), i.e., if y = Tx for some x € X then

-z = x—x9— g1 LT)T(z — z0)
= pe(T)(z — 2a).

A key step to an elficient implementation of a Krylov subspace method lies in a
cheap recursion for the computation of zpy4,, given 2y, ..., rp. From this point of view,
real orthogonal residual polynomials are especially convenient because they satisfy a
three-term recurrence relation: if & > 1 and pi_;., px and pgpy1 are three consecutive
orthogonal residual pelynomials then, in view of their normalizalion at A = 0, there
arc numbers ¢« # 0 and J;, & > 0, such that

p(]:]., p;zl—a(y\,

(pk—l - Pk); k z ]-v (23)

G
Pes1 = —CkADE + Pr — ﬂka

k-1
and hence the associated iteration polynomials satisly
g-1=0, ¢ =ag,

A3
gy — @), k1.

Qg1

@t = Q-1 + ox(pe +

It follows from (2.1) that z) can be computed by the following coupled recursion:

Argy = y—"Tay,

1 = T+ OdoA:I:U \ (24)
Az = y—Tee+ fi Az,
Tppt = Tp+ opdzy, k>1.

Consequently, only the two most recent iterates need to be stored, and the computa-
tion of zy,, amounts to one appiication of the operator 7', essentially.
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One is left with the freedom of choosing the inuer product [-,-] for the orthogo-
nality of {pr}. Two conceptually different possibilities have to be distinguished. For
instance, one can choose a fixed inner product a priori, thus giving rise to a fixed
sequence of residual polynomials {px}, once and for all. This is the idea behind the
so-called semniiterative methods, with the »-methods being their most prominent rep-
resentatives {cf. [6, 34]); here, the residual polynomials are rescaled and translated
Jacobi polynomials over [0, 1], and a lot of theoretical results are applicable for the
analysis of these iterative schemes.

The disadvantage with ihe approach of using a prefixed weight function is the loss
of adaplivity to special features of the right-hand side. For exarnple, it may occur that
the right-hand side has no components corresponding to larger spectral elements of
T', that is, virtually, one is concerned with an operator whose spectrum is contained
in a proper subinterval of [0, 1]. If such information were at hand, then there would be
potential for speeding up the iterative process. Conjugate gradient type methods are
adaptive in this scnse, since the inner product [+, -] is based on the spectral distribution
of the right-hand side with respect to the spectral family {E,} of T

For @, € Il consider the family of bilinear forms

oo
otl= [T N dIE (Y = Tao) (25)
where the parameter n belongs to Ny, Note the cquivalent expression

[, ¥l = {0(F)y = Tza), T*0(T )y — Tz0))

which is used for a numerical realization. It will prove convenient to extend the defi-
nition (2.5) to negative integers n by

el = [ # APV By - Teo)l’, <0,
04
which can formally be rewritten as

[yl = {p(T)(y — Tao), T™ (T (y = Tz0)).

Of course, this definition for n < 0 is only well defined when {1,1], exists, i.e., when
y — Tzy belongs 1o the domain of (T1)/2.

For those n € Z for which [1,1), exists, e.g., for n € Np, there is a well-defined
sequence of orthogonal polynomials {an]} with pEC"] € 1Y and

Ecﬂlap‘['nl]n = 01 k % J . (26)

In the sequel, a Krylov subspace method (2.1} will be called a conjugate gradient
type method, if its residual polynomials are given by {pinl} for some n € Ny. Later,

9



in Chapter 6, it will be necessary to slightly modify this definition when studying
problems with indefinite operators 7. The superscript n will be omitted as long as
there is no danger of confusion.

To implement a conjugate gradient method via (2.4), the cocficients o and 3
from {2.3) are required. As will be shown next, these parameters can be determined
in the course of the iteration. It is obvious from (2.4) that

Az = s {TWy — Tzo) , (2.7
with
s6 =1, Sk = pr + Bese—r, k2 1.

There is another rclation between {sy} and {py} which follows easily from (2.4),
namely

Phy1 — Pr — ()!k}\.‘s'k.’ k 2 0. (2.8)
Using the orthogonality of {p.}, the previous two relations yield {(for all £ > 0)
0 = [pe+1, 8kl = [Py Skln — 0r[ASk. St]n = [Pe Pr)n — @slsk, Silntr,

which cnables the computation of «y from

S (2.9)

O — 3
[Sk, Sk]n+1

It will be shown in Proposition 2.5 below that {sk} is again a sequence of orthogonal
polynomials, namely one with respect to [, ]n41. Hence, for n > 1,

0 = {Skask—l]n+1 = [pka’\sk—l]n+‘8k{5k—lﬂsk—lJn+l
1

(07|

[Pr, Pro1 — Pln + BelSe-1, Sk—1]n41

1
= - [pk>pk]n + ﬁk[sk—laskfl]ni»l .
[279|

From (2.9) therefore follows

1 o

Cr—1 [Sk—l,sk—l]n+1 B [Pk—lapk—l]n’

B = E>1. (2.10)
Notice that 3 is not required in (2.4).

As will become clear in the following chapters, the numbers |p{(0)| = gx-1(0) play
an important role when conjugate gradient type methods are applied to regularize an
ill-posed problem. Since pi(0) = 1 and py has all £ zeros in the convex hull of the
spectrum of 7' which, by assumption, is contained in [0, 1], it is obvious that p}(0) is
always negative for k > 1. Taking derivatives in {2.3) yields the recursion

10



o0 =0, PO} = ao,

Phaal0)] = o + (L0 + s 2 (A~ o)), k21
Throughout this text let always be

% == number of nonzero points of increase of a()) = ||Ex(y — T'zo)||*. (2.12)

# may be finite of infinity, but for & < oo ihe bilinear form [+, -], fails to be definite on

the space of all palynomials. It defines an inner product on Il , though, and if the
origin is no further point of increase, then there is a unique polynomial p, of degree x
in {12 which is perpendicular to /I._;. p, has all ils & roots in the points of increase

of

Es(y — T'zo)||?, hence [py, p)n = 0. In other words,

ly — Tzl = llpo(T)y — To)|| = 0,

independent of the parameter n € Ng, and conjugate gradient type methods terminate
after & steps with a solution z, of (1.1). Note that in this case y — T’z belongs to an
invariant subspace of T' of dimension «.

If y has a nontrivial component in the orthogonal complement of R(T'} then A = 0
is an additional {i.e., the x + 1st) point of increase of ||Ey(y — Txo)||. In this case,
the conclusions y — Tz, = pu(T)y = Epy, and (I — Ep)x. = Ty remain valid when
n > 1, since for n > 1 there is no contribution to [+,+],, coming from A = 0. On the
other hand, if n = 0 and the origin is the x + lst point of increase, then the roots of
px interlace with all points of increase, and no polynomial in /7%, is orthogonal to
[l sincc any such polynomial should have a root at A = 0. In other words, in this
case (I — o)z, # Thy.

In any case, the iteration (2.4) “breaks down” in the course of the & + 1st step
since, by the above discussion, [s., s.]n41 vanishes so that a, is undefined, cf. (2.9).
Therefore & = & is the ultimate stopping index. This “irregular” finite termination
will cause some extra considerations later on.

Conjugate gradient lype methods combine in an ideal fashion computational sim-
plicity (as shown above) with certain optimality properties. This is the essence of the
following well-known fact.

Proposition 2.1 Let @, be the kth iterate (0 < k < &) of the conjugate gradient type
method with parameter n > 1, and let x be any other element from the same Krylov
subspace o + Kg_1(y — Txg;T). Then,

10y — T < Ty — Ta)]), (2:13)

and equalily holds if and only if v = 2y,
11



Proof. Rewriting (2.13) in terms of the residual polynomials py, yields the equivalent
statcment

e pilnct < [puplacy forall pe 19, (2.14)

Given any p € 1P it follows that p — py = As for some polynomial s € IT,_,, and
hence, by orthogonality

[P, Plam1 — [Pr: Prln=1 = [P — Pas P F Piln=1 = {5, A5 + 2pe]n = [5, 8)nsr -

From this follows (2.13), and equality holds if and only if s = 0, i.c., if p = p;. 8]

The polynomial p € IIf minimizing (2.14) is the so-called kernel polynomial asso-
ciated with the weight function da = AL d|| Ex(y — T'zo)]|%, cf., eg., [9, Secl. L7] or
(76, Sect. 3.1].

Remark. ‘The case n = 0 plays an exceptional bul interesting role: if y € R(T"/?)
then ||7Y*y — T'z:)||? = [pr, pe]—r in (2.13) is well defined, and Proposition 2.1
and its proof remain valid. In particular, this is the case when (1.1) has a solution.
In general, however, this assumption will notl be satisfied. In this case a considerably
weaker result holds, <f. Theorem 2.2.

2.2 Two particular conjugate gradient type methods

Although the properties of the different conjugate gradient type methods are very
similar, the evaluation of the inner product (2.5) becomes somewhat expensive when n
is large. Thercfore, in practice, n is typically zero or one. The corresponding algorithms
are discussed below in greater detail.

— The minimal residual method (MR)

Consider first 1the case n = 1. llere, the statement of Proposition 2.1 is especially
attractive since the norms in (2.13) and (2.14) simplify:

[ 2lo = [IP(T)(y — Tzo)lj*.

Consequently, Proposition 2.1 states that the residual y — Tz of the kih iterate zy
has minimal norm among all iterates in the Krylov subspace zg + Ki-1(y — Tzo; T').
For this reason this method is occasionally called minimal residual method (MR).

Section 3.3 deals with a stopping rule for conrjugate gradient type methods {with
parameter n > 1), which halts the iteration as soon as the residual drops below a
certain tolerance. Obviously, among all conjugate gradient type methods, MR will
meet this stopping criterion first.
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J"ozy*ng

d:’f‘g
Td=Trp
k=10

while (aect stop) do
o = (re, Tri)/ | T2
The] = Tg + cedl
Thel =T — ald
3= (?‘k+1,T7"k+1)/(?"k,TT‘k>
d=re +5d
Td = Trip + 8Td
k=k+1
end while.

Algorithm 2.1: MR

Tl}:y—TCCU
d:?"o
k=0

while (net stop) do
a = ||rel*/(d, Td)
Tiy1 = Tk + ad
reyr =15 —al'd

B = lreall*/llred®

d =i+ 2d
k=k+1
end while.

Algorithm 2.2: cc

13



The MR-mecthod is summarized in Algorithm 2.1; by providing cxtra storage for
T'd only one multiplication with 7' is necessary per iteration.

— The conjugate gradient method (CG)

The conjugate gradient method (CG) as proposed originally by HESTENES and
STIEFEL [45], <f. Algorithm 2.2, corresponds to the choice n = 0 in Section 2.1. When
y = Tz, that is, when problem (1.1) is solvable, then the kth iterate z; minimizes the
error  — ;. in the so-called energy norm (x —x,, T(z — 1)) in 2o+ Koy (y — T2 T).
When there is no solution (note that this is the typical situation in ill-posed problems
if y is subject Lo noise) then one might expect that z; somehow sccks to approxi-
mate “something unbounded”. Nevertheless, CG can be applied successfully with an
adequate stopping rule, cf. Section 4.3.

The following result is the analog of Proposition 2.1. It is included merely for the
sake of completeness; it will not be used in the subsequent analysis. To state the theo-
rem properly, more notation needs to be introduced: let {11}..¢ be the regularization
corresponding to truncated spectral expansion, i.e.,

Tly = 2o+ THI = E)(y — Tza). (2.15)

Theorem 2.2 Let py, be the kth residual polynomial of CG and x. be the corresponding
approzimation. Furthermore, let & be any other element in 2o+ K (y—T1'zo; T) and lel
p € 1} be the corresponding residual polynomial for which y — Tz = p(1')(y — T'zq).
Then, with T] as in (2.15), the following holds for every 0 < e < 1:

‘ y  (p—p)(X
(L - sl < [Ty — o+ 2 [ 2T gy g (210

Proof. Let £ > 0 be fixed and, for the sake of simplicity, let da = d||Ex{y — Tzo)||*
Then,

TETy — 2P = |ETVATy - )|+ (T - BTVl - o)

= BT e)® + (1~ E)TYH(Tly - 2)|?

s (L—p(N)° o p2(A)
S e d“LTd“

Accordingly, when p = py, Le., when x = zy,
) = (1 — pe(M)? oo p2( )
ity et = [T gy 2B g gy
0 s+

14



By orthogonality (note that {px — p}/X € ITi_1),

oo {p? — p2V( X — —
[T oy p PP PP <0,
0 A A A

and consequently,

@ g2()  p2()) (5 = ()
[ da< [T doy [T IR da

Inserting this into (2.17) yields

17Ty — )]

< j(;( d _|_/OO d +/ Lmda'
Ty (. TR T B
=y e e [P g,

as was to be shown. O

Theorem 2.2 indicates thal, to some extent, the iterates of CG approximate some
Tty in the respective Krylov subspace. The number &, however, has to be chosen
carefully.

If y € R(T), then one can let ¢ — 0 in Theorem 2.2. In this case, the integral on
the right-hand side of (2.16) goes to zero showing that Proposition 2.1 holds for n = 0
as well.

2.3 Conjugate gradient type methods using TT™

So far it has been a bagic assumption that T is selfadjoint and semidefinite. When
this fails to be the case, conjugate gradient type methods lose all their properties and
may break down with division by zero. However, as TT* is selfadjoint and positive
semidefinite, the previous algorithms may be applied to the (formal) problem

TT w =y, z=T"w. (2.18)

Denoting by {E,} the spectral family of 77", the bilinear forms |-, ], from (2.5)
and the definition of the corresponding residual polynomials for conjugate gradient

15



type algorithms immediately carry over to this more general situation. Obviously,
l¢,¥]n can be computed as

[y ) = {{LT7)y — Toj, (PT7)" T TNy — T20)),
where (TT*)" is defined via the generalized inverse (T7*)! for n < 0.
The iterates of the resulting algorithms are defined as
wi = wo + G- (TT)(y — Tzo),

where the meaning of we remains to be clarified. Keeping in mind that the intro-
duction of w was just a formal means to represent & = T™w, the iteration should be
transformed into z-space, which yields the (well-defined) recursion

=20+ T qu1 (TT* )y — Txo) = x0 + gt (T"T)T(y — Txo) .
zp now belongs to a Krylov subspace with respect to 7T, namely
Tr € Ip + }Ck_l(T*(y bt T.To), TxT) .
The residual y — Ty, fulfills
y— Tze=p(TT }(y — To),
and if y = Tz then
T —Ty = pk(T*T)(:c - $0) .
For n > 1 the iterate z; only depends on the component of y in the closure of R{T")
since T*y = T*Py; recall that P is the orthoprojector onto the closure of R(T). For
n = 0 this is different because the bilinear form [, Jo and thus the polynomials {p;}
also depend on (I — P)y.

In the following, the most important representatives of this alternative class of
conjugate gradient type algorithms are treated in greater detail.

— G applied to the normal equation {CGNE)

When T fails to be selfadjoint, positive semidefinite, the standard approach is to apply
CG to the normal equation

TTe =Ty,
The algorithm, cf. Algorithm 2.3, is called CGNE and corresponds to a conjugate
gradient type method (for TT*) as introduced above, namely the one for n = L.
According to Proposition 2.1, the residual polynomials minimize [p,, p.]o; hence, the
iterates z, minimize the residual

ly = Taell = lpe(TT7)(y — Tzo)il -

Conseguently, CGNE shares the following property with MR: if the iteration is to
be terminated as soon as the residual drops below a given tolerance, then CGNE will
take fewest iterations among all conjugate gradient type methods of the above form.

16



ro=y—Tao

d = T*TD

k=10

while (not stop) do
o= ITnull?/ITd)?
Trp1 = 2 + od
tha1 =15 — ald
A= T resa|I*/ |27 ®
d=T"ry + 8d
k=k+1

end while,

Algorithm 2.3: caNE

ro=y— T
d:T*T[)
k=10

while (not stop) do
o= el 1]
Tpp1 = i + ad
rpp1 =1 — al'd
B = llriesll?/Hrell?
d="T*ry + 8d
k=k+1

end while.

Algorithm 2.4: cGME

17



—— The minimal error method (CGME)

CG applied straight to (2.18) corresponds to the choice n = 0 (cf. Algorithm 2.4). In
gencral, the iterates have no optimality property bul for y € R(T') they minimize the
error norm |[Tty—z| in the respective Krylov space. This algorithm shall therefore be
called minimal error method (CGME). For perturbed data, the analog of Theorem 2.2
reads as follows:

Theorem 2.3 Let py be the kth residual polynomial and ;. the kth approximation of
CGME. Furthermore, let x be any other element in zo + Ki(T*(y — Txo); T°T) and
let p € IIY be the corresponding residual polynomial. Then, with T as in (2.13), the
following holds for cvery 0 < ¢ < 1:

IThy — ax]® <

: (p— p)(A
tty— el +2 [ PP gy .

The proof is completely analogous to the proof of Theorem 2.2 and is left to the
reader.

2.4 Basic relations between conjugate gradient type methods

In the remainder, the analysis will be restricted to the case zo = 0. Since the general
case of a nonvanishing initial guess can be transformed to this special case via the
transformation  — & — 2o, y — y — Tg, there is no loss of generality. Furthermore,
only the results for the algorithms of Section 2.1 for selfadjoint, semidefiniie operators
T shall be stated explicitly. If no opposite is said, the results hold accordingly for the
algorithms of Section 2.3 for non-selfadjoint T, and the proofs apply almost word by
word. Significant differences will be mentioned.

There are a number of quite interesting connections between the residual polyno-
mials of conjugate gradient type methods corresponding to different parameters n. To
state these results properly. recall the notation {pE‘]} of (2.6) for the restdual polyno-
mials thal are orthogonal with respect to [+, ). From the theory of real orthogonal

polynomials it is well known that pEcn] has k simple real zeros AE",% 7=1,...,k, with

0<al <A <<l < <1.

r

The superscript parameter n will again be omitted when its value is clear from the
context. It follows that

" k A als LA
A =TI0- 5. A0 =-> 17 (2.19)
j=1 )\j,k =1 Aj,k

18



Note that p ’(0) is always negative and |pn}'(0)| > k. Recall that the zeros of two

consecutive polynomials interlace, i.e., one has
0< )\[inkJrl < )‘ : < /\gn;c+1 < }‘[271}; <... < ’\Ln}c < )‘ﬂl,kﬂ :

The following statement is essentially the translation of a well-known identity for
kernel polynomials from the orthogonal polynomial literature (cf. [76, Theorem 3.1.3]).

Lemma 2.4 Letn e N, 0 < &k < . Then one has
= A e Z A WY (2.20)
and the minimum of (2.13) satisfies the identily

k -1
(= Tzl = [, oMy = (0007021 (2.21)

=0

Proof. The first cquality in (2.21) is clear from the definition of z;. To verify the
[]

.. . . ~1 . .
remaining assertions, expand p;" in terms of pgn }, which yields

[n] [PEcnlapJn 1]]7'1—1 [n—1]
P = Z =1 [n=1] py

=0 |P; 2 P ]71—1

Since p[-nfl](O) = pk (D) = 1 one has (p; [n=1] pEcn])/)\ € ITi_; for any 7 with 0 £ 7 <k,

J
and hence, using the orthogonality of {pk“]} one obtains

s = e e+ L P
m B = i, bl )
= Py 7—.}/\—}?1 [ & [pk ' Py }n—l-

! gives (2.20). The second equality in (2.21)
follows immediately from (2.20) evaluated at the origin, since pk]((]} = pgn 1]( 0)=1
O

forall0 < 7 < k.

Inserting this into the expansion for p[

Remark. A closer look at the above proof shows that Lemma 2.4 extends to nonpos-
itive integers n for which [1, 1], exists whenever

[r—-1] In] (] P{n ! —chn]
[pk apg — P ]n 1 —[ —JT—]R

This is always the case for n < 0; it is true for n = 0, if and only il Fgy = 0.
19



The nexi proposition reveals another connection between the two consccutive se-
quences {pk]} and {p[n"'l]} This result implies in particular that the polynormial s

given in {2.7) and (2.8) is a scalar multiple of p"'H],

Proposition 2.5 Letn € Ny, 0 € & < «k. Then

] (0]

) 1 | .
= LI i =0 050 (22)

Proof. By construction the right-hand side of (2.22) belongs to HO (mm is positive
because of (2.19) and the interlacing properties of the zeros of pk land pH_,‘) Denate
this polynomial by p. For any other polynomial ¢ € [I;_, one has
I 0 W
[p: q]n+] = [p[ ] - pgc-;l—l Q}

Thn X

— (I gl — [P dla) = 0.

This proves that p equals pEH'l]. O

Lemma 2.4 and Proposition 2.5 when rewritten in terms of orthonormal poly-
nomials — are known as Christoffel-Darbouz identily in the orthogonal polynomial
litcrature. Later on it will become necessary to estimate \pL”L(O)I. To this end, the
following corollary provides an alternative identity lor 7y ,,, which follows readily from
Proposition 2.5. Note that this result requires n > 1.

Corollary 2.6 Forn € N, 0 <k < «, the following holds:

in] | In] (] [n]

n n] (Pe s i In—t — [Pig1s Pigilnot

T = PEC]’(U) Sc+1 (0) = [nt1] [n:11] = :
[Pk :pk }n

Proof. For0 <k <wxandn2>1,

]
T T 1 T
A s = 0 5l A R e = A (229)

since (1 — pin]}/)\ € I,_,. Thus, Proposition 2.5 yields
P ). = .
(s s = [, o)
([Pk apk]]n— [P;c+1,?7u]-1 =1}/ Thn s
and the stalement of the corollary follows. 0
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Another consequence of Proposition 2.5 is the following well-known relation be-
tween the zeros of kernel polynomials and orthogonal polynomials.

Corollary 2.7 for 1 < k < & and n € Ny the following interlacing propertics hold

for the zeros of the polynomials PkJ, PLnH, and pi"“

0 < WLy < ML < N <AL < 3L < <AL <A A,

Proof. From (2.22) and the mterlacing property of the zeros of pkn and p,ﬂl folows
that pEc”“} has alternating signs at the zeros ofp nl . Moreover, p[n+1](,\[n]) >0 must
hold since pgﬂl()\[“]) < 0. Similarly, p“+1 has alternating signs af the zeros of pkﬂ,

which yields the desired inclusion for the zeros of pn+]] O

There is also a result connecting three consecutive sequences of residual polynomials

{p1y, {plr Y and {9

Proposition 2.8 Letne€ Ny, 0 <k <k —1. Then

n+1 7
(n+2) 1 pEc++l I pEc-ij-l

Pe = i A

with Bpnn = et (0) — P (0) > 0. (2.29)

Proof. Lel p := (ch?fl]] pk+1)/}\ Tt follows that p € H; with p Z 0 as long as

k < k& — 1. Furthermore, for any polynomial q € T, _,,
[ng]n+2 - [p.[!:ril]’(]]n-%l - [Pﬂla /\Q]n =90

by orthogonality (note that Ag € TI). Hence, p is a scalar multiple of pI"*%; the
representation of Oy » can be determined by letling A — 0. 0g4, ,, is positive because

of (2.19) and the interlacing properties of the zeros of pL’“;:“l” and pﬂl, cf. Corollary 2.7.
O

Remark. If & = k — 1 then three cascs must be distinguished (recall the discussion
in Section 2.1): if n > 1 then pl**1 = pil and hence (2.24) is no longer true for
k = k — 1 since the polynomial p constructed in the proof vanishes identically; the
sarne argument applies wher n = 0 and y € R(T). If n =0 and y ¢ R(T) then
£ pl% 5o thal p 2 0. In this case Proposition 2.8 remains true for k =« — 1,

As in Corollary 2.6 one can use this result to derive an alternative expression for
8y . This identity will later on play a central role in the analysis of the ¢G method.
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Corollary 2.9 Forn € Ny, 0 < k < &, the following holds:

[n+1]  [n41}

Oun = P 0) — g0 = P DB e (2.25)

[pk 1 =pk 1]]n+1

Proof. Making use of (2.23), Proposition 2.8 yields for 0 < £ < &t

n+32 n+2] n+2
[pgc llﬁpk 1 ]n+1 = ch!_]')]'}ﬂﬁ‘]

= (¢ 1], = P 1000/ 6k
= I 10/ 0kn
[p;;n+l}1 pkn+1}]n/9k,n .

Therefore (2.25) 1s true for 0 < k < . For k = &, the above derivation remains valid
if Proposition 2.8 can be applied. According to the remark following Proposition 2.8
this is the case if pltt # pll Otherwise both sides of (2.25) vanish, so that the
statement is trivially fulfilled. O

2.5 Implementing both MR and ¢G in one scheme

The strong connections beiween the sequences {pg:lj} and {pLﬂH]} suggest the possi-
bility of implementing the conjugate gradient methods with parameters n and n + 1
together in one scheme without doubling the number of multiplications with the op-
erator T. In view of the different optimality properties of the swo sequences this may
provide a possibility to double check the quality of the computed approximations.

In this section it will be shown that it is indeed possible te extend the conjugate
gradient type algorithms in this way. For ease of notation, however, it will only be
shown how to implement MR and ¢G in one scheme. The extension to other values
of n is straightforward. Throughout this section, z; always denotes the kth iterate
of G, whereas the corresponding MR iterate is called z;. The associated iteration
polynomials inherit the superscript notation of the residual polynomials, i.c.,

o= qo (Ty, 2 =g, (T)y.

As it turns out, one can extend both algorithms, MR and CG so as to compule the
other sequence of iterates as well.

Consider the MR scheme first. From Proposition 2.5 follows
o _ _[0]

o
[0] l—PiL [0] Py — Prs1

Ui _T:qk—l-'_f“%c 1+“k0P[]

and hence,
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Trpr = Ty = ¢ (T)y + meopi(T)y = 24 + mroly — Tzz)

Note that the expression for mq given in Corollary 2.6 is not implementable within

the MR scheme because it requires knowledge of the residual pﬂl(T)y =y —Txpe-
However, there is an alternative expression for mq: by Proposition 2.5 one has

Pgil—-Pi}-'ﬂkﬁAPEL

and the orthogonality relations imply

= okt pl o = (i lo — meoleh . A
or equivalently,
A e
[pi!

This can be further rewritten — sirntlar to (2.23) — since

Teo =

(0] (1]
Py —P
b 2o = [l lo + [P 2 = [ o

In conclusion this yields the following recursion for the C€G iterates within the MR
scheme:

lly — Tz|”
y— Tz, Ty —Tz))
No further extra work is required since all quantitics in this recursion are computed
anyway, cl. Algorithm 2.5.

Thyr = Tk + ( (y—Tz).

An alternative implementation could start with Algorithm 2.2, 1.e., with the CG

scheme, Here, the key formula turns out to be (2.20) in Lemma 2.4. Note that the
(n-1]

right-hand side of (2.20) is a convex combination of the residual polynomials p;"™ ",

0 < j < k. Therelore, it follows that

[
L 1 0 [P aP ]0 [ [P :P ]u 0
[] Ec-]f-l Pk+1 Z [P; Sp;p]]()l 511 = ——Hl Hl ]1 + ——Ec;]-l Hl []
‘ k 2Pk 0 [Pk+1»Pk+1]D

and hence,

(1]
. qu](T) - [pk+1apk+1}0 [1] (T + [Pk+1 Pk+1]0 [OJ(T)

Zrpy1 = 1 /1 5 4.
k P E\:]]O [pk+1=p£:ll}
[PhL, P o [paﬂ,pBLJo
monn okt o] | Tk
E oy Pk ] [Pk+1,~Pk+1]0
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24

In = Zp
ro=y— 1z

ﬂ.’:?"o
Td = Trq
k=0

while (not stop) do
a = (ry, Tri)/ || Td|}?
Zpy1 = 2k + oud
7= |irell?/{re, Tra)
Thr1 = T+ 7Ty
topr =1 —adld
B = (reqr, Trag)/(re, Trg)
d =141 + 8d
Td = T?"k+1 + ﬁTd
k=Fk +1

end while.

Algorithm 2.5: MR + cG

Zn = To
ro=y—Txp
d:?“o
Yo =1
k=0

while (not stop) do
o = sl /id, Td)
Tpe1 = Ti + ad
Thk+1 = Tk — (J!Td
B = llrken I/l
Yi+1 = 1+ By
zkr1 = (Bweze + Tii1) Vo4
d= Tksi + ,Gd
k=k+1
end while,

Algorithm 2.6: ¢G + MR




[1] [1}

In this expression the numerator [pk+1,pk+1}0 can not be evaluated as p;i, is not
yet known. This can be remedied hy another application of (2.21) in Lemma 2.4.
Introducing

(0] [OI]

7 = P, (2.26)

[Pk 1pk

the factor in front of z; can be rewritten as

[Pk+1 aPL}L] Bkt

Pl T ren

with the same Si’s as in (2.10) (note that n = 0 in the present context). Because of
(2.21) the sequence {v;} enjoys the following recursion for & > 0,

0 (o] o [0) ()
et = [kt Pleialo Z[Pﬂ Pt = 1+ [ A E[p”,pﬁ-]]o‘
o fo
p 1 P yy P
e il B,
(pi's pic lo [k 1pk lo

Thus, the MR iterates can be computed within the CG scheme as follows, cf. Algo-
rithm 2.6:

2+
Th+1 Yh+1

Yo =1y Yer1 = 1+ Berave, Zpe1 = Br Tkt -

It should be remarked that Algorithm 2.6 requires one inner-product less than
Algorithm 2.5, and also no update for T'd; it is as cheap as the “pure” MR implemen-
tatton in Algorithm 2.1, For the stopping rules suggested in the later chapters the
norm of the MR residuals are required. They are not computed in Algorithm 2.6 but
they are immediately available since

I
lly = Tall* = ol Tayf*,

cf. (2.26). As {ly — Tzi|| is known this requires no additional inner product.

It is also easy to incorporate the computation of hoth sequences {p,[fl’ (0)} and
{pE:]’( 0)}. Since jp[”]’( 0)] = q[”} (0) these numbers can be derived from the recursion
for the iterates. For example, in Algorithm 2.6 one would compute

P (0)] = (Berr e P (0)) 4+ 1950, (0)1) /e -

The conjugate gradient type methods of Section 2.3 can also be implemented within
one scheme. For CGME and CGNE this Is exemplified in Algorithms 2.7 and 2.8, As can
he seen, Algorithm 2.8 requires one inner product less than Algorithm 2.7, but it needs
four vector updates as opposed to three vector updates in CGNE {Algorithm 2.3).
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26

To = 2o

T'o=y—T20
d=T*T'0
k=0

while (not stop) do
a= [T [*/||Td||*
Zppy = 2p + od
o= (|rali 2 1T el |2
Tryr = T + 717
rigr = rp — af'd
B = T reas |2/ T2
d == T*'rk+1 + ﬁd
k=k+4+1

end while.

Algorithm 2.7: CGNE + CGME

20 = g
ro=y — T
d=T*T‘D
Yo=1
k=10

while (not stop) do
a = [|lrf?/]1d)|?
Try = Tk + ad
k41 = Tk — ald
5= st/ el
Yerr =1+ n
Zit = (Be2k + T )/ Yo
d= T*‘Pk.i.l + ﬁd
E=k+1
end while.

Algorithm 2.8: ¢cGME + CGNE




2.6 Stability issues

There are a number of mathematically equivalent implementations of the methods
of the former sections. For instance, two different implementations of MR have been
derived in Section 2.2 and 2.3, i.e., Algorithms 2.1 and 2.6. Another implementation
of MR that can be found in the literature differs in the definition of oy for (2.8): since
Pr+1 = Pk — QS minimizes [pei1, pry1jo over I, o may be determined from the
condition

d
o [Pe — @Asr, pp — @dsilo = 0,

which gives

_ [poosih (2.27)
[sks k]2

1277

Finally, some authors advocate Lanczos based implementations like the SYMMLQ (or
MINRES) algorithm of PAIGE and SAUNDERS [64]. Similar implementations exist for
the methods of Section 2.3: LSQR [65], for example, is an equivalent implementation
of CGNE based on Lanczos bidiagonalizalion.

The principal problem with any of these diflerent implementations of one and the
same method is the loss of orthogonality in the residuals (or residual polynomials)
due to finite precision arithmetic. Recall that this orthogonality is the major tool for
the analytical results in this book. However, as it turns out, orthogonality can only be
maintained by reorthogonalization techniques that are significantly morc expensive
and require a larger number of intermediate vectors (cf., e.g., [26, Sect. 9.2]). In the
literature the influence of round-off errors on conjugate gradient type methods has
been studied mainly for well-posed problems; only HANSEN [42] comments on the ill-
posed case. This distinction is important though, because ill-posed problems obviously
require completely different standards.

In the numerical experiments for this book CGNE and its variant with oy computed
by (2.27), Algorithm 2.8, and LSQR have been compared with each other. As it turns
out, up to the point of divergence the error norms ||z — ;|| of the four algorithms
always differed by less than about 5%, i.e., their difference is negligible as compared to
the limited accuracy that can be achieved for ill-posed problems. Reorthogonalization
has only been possible for the smaller problem in Section 6.7: the result was a slight
speedup due to the lack of so-called “spurious eigenvalues”, but the optimal accuracy
was never better than without reorthogonalization. This is in agreement with the
observations in [42]. In view of these limited experimental results it does not seem to
pay to prefer the slightly more expensive implementation LSQR over Algorithm 2.3 for
ill-posed problems, and Algorithm 2.8 seems to be as reliable.

Besides the question of numerical stability concerning round-off it is as important
to study the influence of perturbations in the right-hand side. In the remainder of this
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section this will be considered in terms of continuity of the operator Ry that maps
the right-hand side onto the corresponding kth iterate.

Proposition 2.10 Lel the selfadjoint semidefinite operator T be compact and non-
degenerate, and consider any conjugate gradient type method with parameter n € INy.
Then, for any k € N, the operator By (thal maps the right-hand side y onto the kih
iterate «3) is discontinuous in X.

Proof. Let {v;};jen be an orthonormal eigensystern for 7', and let {A;} be the corre-
sponding eigenvalues, i.e., Tv; = Xjv;. Without loss of generality let the first £ — 1
cigenvalues be nonzero and pairwise distinet. For

k-1
z:ijvj, y=1Tx,
J=1

with & # 0, 1 <7 < k, let rn > k be such that A, # A;, 1 <7 <k, and define
y* =y + dvp, d>0.

As T is non-degenerate the above construction yields y,y* € R(7'), and obviously
yt s yasd— 0.

Denote by {zf} the iterates of the conjugate gradient type method corresponding
to right-hand sides y*, respectively. Accordingly, let {pi} denote the corresponding
residual polynomials. Since ||Exy®]/? has precisely k points of increase, none of which
is at A = 0, it follows from the discussion in Section 2.1 that

N ARy
pp(A)=(1- g)}l}l(l - E)’

hence,

J
mf:RkyizTTyizxiA—vm.

Choosing m = m(d) such that §/A, (s diverges to infinity as 6 — 0, this yields
|Bey™ — Ryl = 26/ Amisy — o0, =0,

proving thus the discontinuily of fy. O

Every stopping rule for a conjugate gradient type method must ultimately take care
of the phenomenon discovered in the above proof. In particular, no a priori choice for
k, i.e., a stopping rule depending only on 4, can render a conjugate gradient type
method a regularization method. Since this (in)stability is such a delicate matter the
following theorem provides a complete characterization of all points of discontinuity
of Ry, valid for general (not necessarily compact) operators 7.
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Theorem 2.11 Assume that (1.1) is ill-posed, i.c., that TT is unbounded. Then the
operator Ry, k € N, is discontinuous at y, if and only if Py belongs to a (k — 1)-
dimensional invariant subspace of T'.

Proof. Consider the enly-if-part first, i.e., assume that Py does not belong to a
(k — 1)-dimensional invariant subspace of T, and let {y*}s»0 be approximations of y
with ¥ — 49 := y as § — 0. Further on let the kth residual polynomial pf correspond-
ing to the right-hand side y®, § > 0, be

pi(z\)=l—a‘f/\—...—aiz\k;

note that these polynomials are well-defined and af # 0 for all sufficiently small § > 0.
This yields

k

zg = Rey’ =3 alT 1y

=1
The aim is to show that af — a2, 1 < i < n, uniformly as § — 0, which readily implies
that Ry is continuous at y* = y.

Let [-,-]% be the inner product (2.5) defined by the right-hand side y® and let

{18, }:n>0 be the corresponding moments, i.e.,

o, = (LA = (8, T™y),  me N, (2.28)

The orthogonality of {pf} with respect to [-,-]¢ yields

k k
0= ia)\m]i = [11 Am]i - Zaf[l,Am'H}i = ,ufn - Zlu'iwia?a 0 <m< k-1,

i=1 i=1

Rewriting these k equations for af,...,af in matrix notation gives
8 5 8 5 §
I R '8
Ha M3 Hril ay Hy
M;fa‘; = i , + . = s
§ 4 § 5 §
Br Hep Hak—1 s Hg—1

It follows from {2.28) that 8 — p%, 0 < m <2k —1, as § = 0, hence

ug “‘é ﬁg
By 7

ME—s M= TFOTT TR s,
,uﬁ .“24-1 nugk—l

the convergence is uniform in ||y — y||. To show that the moment matrix M; is
nonsingular, observe that for z = (¢y, -+, ()7,
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k
2" M,z = ||Tr(n+1)/2 Z Cﬁ:}w‘—]ynZ )

i=1

In other words, z* M,z = 0, if and only if

k-1
(Z G T )y € N(T),
=0
that is, if and only if Py belongs to a (k — 1)-dimensional invariant subspace of T'.
By assumption, this is nol the case and therefore M; is positive definite and has a
continuous inverse M, !, Consequently,

Ho

a‘s—>a0=¢Mk"1 , §—0,
iy
uniformly in ||y — v*]|, as was to be shown.
The proof of the if-part is given for y € R{T) first. Let x be the dimension of

the Krylov space Ki(y; T), and assume that & < k. Then there exists a polynomial
px € 1% with

pThy =0, pa(X) = [10 = MA),

=1

where {};}5, are mutually distinct pdsitive numbers. Since (1.1) is ill-posed, the
spectrum of T accumulates at A = 0, and it is possible to choose A y1,..., A from
the spectrum of T' with

ceey

For each j € {x +1,...,k} and cach sufficiently small ¢ > 0 there exists y¢ € X with
145/l =1 and
Ey—ey; =0, Exped; = 45
Let
k
vVei=y+d S i,
J=rtl
and denote by [-,:]%¢ the inner product (2.5) induced by the right-hand side y®¢. If
{425 }uzo are the moments corresponding to [-,J%¢ then it is easy to see that

k
phE = (LA™ = (LA — (LA™ 467 S A £ 50,
j=r+l

for every 0 < m < 2k — 1. This implies, as in the first part of this proof, that
the corresponding residual polynomial pi‘s converges (uniformly) to the polynomial
p5 € 1T which is perpendicular to I7,_, in the inner product space defined by
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k
[o.¢15 := oy fla + 6% 20 MoWW(h),  wv € M.

1=x+1

Since the support of the distribution corresponding lo this inner product is
{Ai,-.-; M}, pl has precisely these k& points as roots. It follows that the kth iter-
ation polynomial qﬁ'fl corresponding to pi‘s via (2.2) satisfies

. 1—pd(x 1
A Pt 5 G N N
Ak Ak

and hence, for £ sufficiently small,

1R = s (D) > 5 1Baeat®l = 556 (229)
As the spectrum of T clusters at. A = 0, Ay can be made arbitrarily small. It follows
that Ry is unbounded (and thus discontinuous) in any neighborhood of y.

This completes the proof for y € R(T). If y ¢ R(T) then a nontrivial component
of y belongs to the orthogonal complement of R(T'}. By the discussion in Section 2.1
CG breaks down in the « 4 lst step; hence, R; is undefined for ¢G. For conjugate
gradient type methods with parameter n > 1, on the other hand,

PRy = R Py,

since the residual polynomials are not affected by any component of y in the orthogonal
complement of R{T"). Thus, Ry is discontinuous at y if it is unbounded near Py; since
Py € R(T) this has been established above and the proof is done. 0

Remark. The same result applies for the conjugate gradient type methods of Sec-
tion 2.3, except that one has to consider invariant subspaces of 1"I"*. The proof is
essentially the same. In the if-part the final estimate {2.29) becomes

Buy® || = 15 (T DTy > —=
[yl = S (T TTY 2 5=

but this docs not affect the conclusion.

Note that actually a stronger result has been proven, namely if By is continuous
at y € A, then continuity is locally Lipschitz, i.e.,

| Bey — Bx’ll = O(Jly — &°I)

uniformly for ¢® sufficiently close to y.
Reconsider the situation encountered in the proof of Proposition 2.10, where

31



k-1
x:ijvj, y="Tz,
3=1

with T compact, selfadjoint and posttive definite, and Tv; = A;v; for 7 € N. It has
been shown that #{ = Riy® diverges to infinity as y® — y if T is non-degenerate and
the perturbations {y°} are suitably choscn. On the other hand, if & # 0,1 < 7 < k,
and if all eigenvalues A;, I < j < k&, are nonzero and mutually diffcrent, then it follows
from Theorem 2.11 that

l’i_l =Ry — Ri_yy ==z, vy,
In other words, the & — 1st iterate of the conjugate gradient type method is a regu-
larized approximation of x in this particular instance. Any regularizing stopping rule
must terminate the iteration with k(y®,8) = k — 1 if y is as above and § is sufficiently
small.
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Notes and remarks

Section 2.1. Forty years have passed since HESTENES and STIEFEL {45] developed
CG and CGNE, forty years with very many contributions to the theory, cf,, e.g., the
bibliography by GOLUB and O’LEARY [25]. HAYES [43] extended cG to well-posed
operator equations, and KAMMFRER and NASHED [46] were probably the first to
analyze CGNE for ill-posed problems. Conjugate gradient methods with respect to
general inner products including the present ones as special cases have been considered
by several authors; the term “conjugate gradient type method” is the same used, e.g.,
by Larby [51].

Section 2.2. The MR-method goes back to a paper by LANCZOS [50] on eigenvaluc
approximations (see also STIEFEL [74]), while the name is adopted from the im-
plementation MINRES by PAIGE and SAUNDERS [64]. The name “conjugate residual
method” can also be found in the literature. GILYAZOV [22] was the first to study MR
for selfadjoint, ill-posed problems.

Section 2.3. While cGNE has already been introduced by HESTENES and
STIEFEL [43], the minimal error method CGME occurs first in papers by Crala [11]
and SaMANsKI [73]. KiNG [47] called it “minimal error method” and obtained con-
vergence rates for ill-posed problems with exact data y € R(T), sce also LARDY [51].

Section 2.4. Most of the results of this section are well known, although the proofs
as given here are somewhat nonstandard. In using this particular perspective, the
intimate relation between conjugate gradient type methods and orthogonal polyno-
mials is espccially emphasized. STIEFEL [74] was the [irst to elaboralc on this point
of view; see also FISCHER [18]. Propositions 2.5 and 2.8 are intrinsic in several works;
GUTKNECHT [31] provides further relations between “consccutive” conjugate gradient
type melhods.

Section 2.5. Algorithmn 2.6 is taken from a paper by LARDY [51]. GUTKNECHT [31]
gives equivalent formulas for computing the iterates of “adjacent” conjugate gradient
tvpe methods.

Section 2.6. The effect of round-off on the conjugate gradient iteration was studied
analytically by PAIGE [63], GREENBAUM [27], and DRUSKIN and KNIZHNERMAN [12];
a nurnber of illuminating numerical experiments can be found in [75, 28, 60].

The (dis)continuity of conjugate gradient type iterations was investigated by
Eickg, Louls and PLaTO [13] for compact operator equations; Proposition 2.10 is
due to them.
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3. Regularizing Properties of MR and CGNE

This chapter presents the analysis of conjugate gradient type methods with parameter
n 2 1 including, e.g., MR and CGNE. It will be shown that the iterates converge
monotonically to Ty if the right-hand side data y belong to R(T). If y ¢ R(T)
then the iterates typically diverge to infinity in norm. Nevertheless, if the right-hand
side ¢’ is an approximation of y € R(T), then some iterates approximate the exact
solution Ty with order-optimal accuracy. The crux of the matter is to decide when
this is the case. If the magnitude of the perturbation ||y — y®|| is known, such a
decision can be based on the discrepancy principle. Otherwise, heuristic arguments
are required to halt the iteration. One heuristic stopping rule is presented at the end
of this chapter; it has the nice feature that it provides an a posteriori error estimate
for the corresponding approximation.

3.1 Monotonicity, convergence and divergence

The aim of this first section is to investigate the qualitative behavior of the iterates
as k — oco. It will be shown that for data y € R(T') the iterates {zx} converge to T1y,
and the convergence is monotone. The key ingredient to the proof of this result is a
simple consequence of Lemma 2.4:

Lemma 3.1 Let y € R(1'), and let m and n be integers with m < n and such that
[1,1]; < oo. Then, given any fized k& with 0 < k < &, all expansion coefficients ;,
0< <k, in

ol = yopl™ 4 ™ 4 el

are nonnegative. If k # k then all coefficients are sirictly posilive.

Proof. Note that m and n may be negative but the assumption that [1,1],, < oo
guarantees that all orthogonal polynomials are well defined. Recall that for & = & the
polynomials pl™ coincide for all admissible values of n since y € R{T"), and hence, all
expansion coefficients except for «, = 1 vanish in this case. For & < & the proof goes
by induction on n — m. Assume first that n —m =1,ie.,m =n—1: if n > 0 then
the nonnegativity of the expansion coefficients follows immediately from their explicit
representation given in Lemma 2.4, As discussed in the remark following Lemma 2.4
this derivation remains valid for n < 0 since y € R(T') holds by assumption. Having
now established the assertion for m = n — 1 one can insert the respective nonnegative
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expansions for p&“-ll, 0 < j < k, into the right-hand side of (2.20) to obtain a non-
negative expansion for m = n — 2, and so on. a

This lemma can he used to prove the following theorem.

Theorem 3.2 Let y € R({'), and let m and n be integers with m < n —1 and
[1,1]m < 00. Then [pf, pil) is stricily decreasing as k goes from 0 to «.

Proof. Fix 0 <k < «, and consider

A= [chnlapk]]m - [Pk+1=pk+l me
The aim is to show that A is positive. From Proposition 2.5 follows

A= [an] - Pﬂlmiﬂ] + Pﬂl]m = Mg, n[P HHE’PE:J + Pk+1]m+1 (3.1}

with mg, > 0. In the case when m = n — 1 (3.1) becomes by orthogonality

4 = n{PE:HJ’ [n]]'n.
[n] [n+1]
n n Pi —
= TMkn »[E‘+1]’p~[5€ +]]] +Trk,n[P,[§n+l]; _k/\—]n"l'l

= mealpf ol

which is pomiwe In th( case when m < n — 1 Lemma 3.1 will be applied as follows.
Expanding pi'*" and pl —l—pL_,]_l on the right-hand side of {3.1} in terms of {p m'H]}
yields positive expansion cocficients ; {0 < ¢ < k)and 4; (0 < j < k+1), respectively,
and hence,

k+1
= Tk,n Z Z YiY; [p[m+1] [m+1]]m+1 = Tkn Z /171 [m+]]:PJm+1}]m+1 .

1=0 ;=0 j=0

Apgain, the right-hand side is positive proving thus the monotonicity of [pE:‘], pl{,c“]]m with
respect to k. DO

Remark. Tn gencral, Theorem 3.2 does not extend to m > n; compare Example 4.3
in Section 4.1 for a countercxample showing that [pgl],Pk ]]n does not decrease mono-

tonically.

Two important consequences of this theorem shall be mentioned explicitly. One
of these is the (not very well known) monotonicity of the iteration error of MR and
CGNE.
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Corollary 3.3 Let {x3} denole the iterates of a conjugale gradient type method with
parameter n > 1 and right-hand side y € R(T). Then the following holds.

(1) The residual norm ||y — Tayl| is strictly decreasing for 0 < k < &.

(12) The iteration error ||T'y — x|| is sirictly decreasing for 0 < k < &.

Proof. Recall that ||y —Tzill? = [px, prJo and {iTy — 2{i% = [pr, prj-2- Since p = pin]
with n > 1 the assertions follow from Theorem 3.2. O

With this corollary available it is comparatively easy to establish the following
convergence result,

Theorem 3.4 If the right-hand side y belongs to R(T') then the iterates {xi} of @
conjugate gradient type method with parameter n > 1 converge to Tty as k — oo.

Proof. If k < oo then p.(T)y = 0 according to the discussion in Section 2.1, and
hence the conjugate gradient type method terminates after & steps with z,, = T'y.
Assume next that « = oc. From Proposition 2.1 foliows that

N7y — T2 < e, @idaos

for any wi € II2. Taking @i (A) = {1 = A)¥, the right-hand side [@k, @k|n-1 converges to
|| Eod ("=1)/2y]|2 by the Banach-Steinhaus theorem, since {@} is uniformly bounded
and converges pointwise to the zero function on (0,1]. As Fyy = (/ - P)y = 0 it
follows that

U2y —Te) 50, k- . (3.2)

Let z be the solution of T = y in R(T') so that
e — xili? = Ipe(T)l|? = {prs pal-2 -,

As stated in Corollary 3.3, ||z — zi|| is monotonically decreasing, and hence the
sequence {x — 7} 1s bounded. Let 2 be a weak limit of some subsequence of {z — z;}.
Clearly, z LA (T, and

T(n-—l}/i(y _ Tfflk) — T(n+l)/2($ _ Cck} N T(n+l}/‘22

‘or the corresponding indices k going to infinity. In view of (3.2) this implies that
: =0, proving that the entire scquence {z — z} converges weakly to zero as k — oo.
From this follows that

e, poj-z = {(p(Tz, 2} = (z — 78,2) — 0, k= oo, (3.3)
From Proposition 2.5 one has
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k=1 k=1
1
[k, Pr}—2 = [Pry Pol=2 + I [Pks Pigr — Pil-2 = [Prs Po]—2 — 3 Tinlpe 2

i=0 =0

and Lemma 3.1 therefore yields

k—1 7
Dk Pil=2 = [pes Po)=z — 3 Tim S veeilAH, oM
1=0 =1

with positive expansion coefficients v; and %; ;. Since 7, is positive this establishes
that

[Pkgpk]—z < {Pk,Po]-z-

From (3.3) now follows that [ps, px]_2 = [z — z&[|* goes to zero as k — co as was to
be shown. O

Remark. Concerning the algorithms of Section 2.3 with parameters n > 1 (including
CGNE) Theorem 3.4 remains true for y € D(T1). To see this one first observes that
the iterates zz do not depend on the component of y € D(T1) \ R(1'}, and one can
therefore assume without loss of generality that y € R(T"). Then the proof as given
above extends readily to this setting since for y € R(T) one has

|77y = zell* = §pe(T*T)Ty||* = [ps, pal-1 -

Even when y € R(T), arbitrarily small perturbations of y - caused by measurement
errors, say need no longer belong to R(T) as the range of T is non-closed. In this
case the itcration will diverge as the foliowing result shows.

Theorem 3.5 Consider a conjugate gradient type method wilh parametern > 1 and
right-hand side y ¢ R(1). If & = oo then |lzk|| = o0 as k — co. If & < co then the
ileration terminales afier k sleps; in this case Tz = Py, and z,. = Tly if and only

ifk =0.

Proof. Assume first that Py #£ y, i.e., Foy # 0. If & < oo then the iteration terminates
with p.(T)y = y — Tz, = Egy, and one has (I — Eg)z, = 7'y. Consequently, z,. = Ty
il and only if Eqayx = qs1{0)Foy = 0, i.e., if and only if & = 0. If K = oo then the
iteration does not terminate and, in view of (2.19), [pi(0)| > % for every k& € N. Since
Foy # 0 this implies

el 2 ge-1{0) 1 Boyll = [P0} | Eoyll —> 00, k= 0.

1t remains to consider the case when Py = y. Since y € D(TT) one has x = o
in this casc, and the iteration does not terminate. As in the proof of Theorem 3.4
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let wr(A) = (1 — A)* € 1. By the Banach-Steinhaus theorem 4(T)y — 0, and
Proposition 2.1 implies that

limsup [707V2(y — Tl < lim |70 20 (Thy| = 0. (3.4)
—60

ko0

Assume now that some subscquence of {z,} remains bounded, so that it has a weakly
converging subsequence with weak limit z, say. It follows that the images of this
subsequence converge weakly to T'z and, because of (3.4), this yields Tx = y, i.e.,
y € R(T) which contradicts the assumptions of the theorem. O

Remark. If the conjugale gradient type method is applied with T instead of T', then
74 converges to TTy whenever y € D(T'1) as has been shown in the remark following
Theorem 3.4. In the remaining case, y ¢ D(T), the iterates diverge to infinity in
norm. The proof is the same as the one for the second case Py = y as given above.

As a consequence, conjugate gradient type methods will in general lead to numerical
instabilitics if too many steps are performed with perturbed data y® ¢ R(T). Instead,
the iteration has to be terminated appropriately: if the unperturbed right-hand side
belongs Lo a finite dimensional invariant subspacc of T', then this has already been
excinplified in a remark following Theorem 2.11; in the remaining case, stability of
a fixed number of iterations (Theorem 2.11) and convergence for unperturbed data
(Theorem 3.4) in principle imply the existence of a regularizing stopping rule, cf. [78].
One such stopping rule is considered in Section 3.3.

3.2 Convergence rate estimates

There are many bounds for the rate of convergence when equation (1.1) is well-posed,
i.e., when the specirum of the selfadjoint, positive definite operator T is contained in a
proper subinterval [a, ] of RY, cf., e.g., [32]: in this case the iterates {z;} converge to
the unique solution z of {1.1) with at least lincar rate of convergence, and a standard
upper bound for the logarithimic convergence factor can be obtained from the condition
number of T, ie., cond? = ||T|[||T~'}}. The convergence factor approaches 1 as
cond T — oo, and the convergence rate slows down.

For ill-posed problems one can always construct data y € R{T') such that the rate
of convergence xy — 1Ty is arbitrarily slow, cf. Lemma 5.3 (¢4¢) with n = —2 and
v arbitratily close to zero, With addilional assumptions, however, sublinear conver-
gence rates can be established. The main assumption that is used throughout the
mathematical literature is the following:
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Assumption 3.6 The solution x = Ty of the unperturbed right-hand side y € R(T)
belongs to R{|T|") for some p > 0, i.e., there ezists w € X with ¢ = {T*T)*?w; for
brevity, let w = |lwll .*

As T is unbounded the range of T is non-closed, hence the sets R{|T|*) form
a decreasing scale of Hilbert spaces, where the topologics are defined via the corre-
sponding preimages, respectively. Accordingly, the induced norms are related through
the so-called interpolation inequality (cf., e.g., [81]):

NToz|| < ||| '~/ | T7=|°"", O<ao<T. (3.5)

It is clear that Assumption 3.6 represents some kind of a priori information. In many
instances, e.g., for Fredholm integral equations of the first kind, the operator T is
smoothing, and therefore Assumnption 3.6 postulates a certain degree of smoothness
of the exact solution. For example, if (1.1} is the problem of differentiation, i.e., z = ¢/,
then z € R(|T'|*) implies that the solution ilself belongs to a Sobolev space of order
it. A posteriori bounds for the rate of convergence of conjugate gradicnt type methods
with exact data y satisfying Assumption 3.6 can be found in Corollary 3.9.

The analysis of conjugate gradient type methods is substantially more complicated
than, for example, the analysis of Tikhonov regularization. The reason is that on the
one hand, the kth residual polynomial of a conjugate gradient type method depends
on the data 3%, i.e., Ry is a nonlinear operator; in Tikhonov regularization, for fixed
regularization parameter &, the function which takes the role of the kth residual poly-
nomial is the rational £/(A + ¢), independent of the actual data y°, and the operator
R, as given in (1.2) is linear. On the other hand, /(A + £) is always bounded by 1
whatever € > 0 is considered, whereas the residual polynomials of a conjugate gra-
dient method need not be uniformiy bounded over [0,1]. This hinders, for example,
the application of the interpolation inequality (3.5) to obtain upper bounds for the
iteration error from the norm of the residual with perturbed data. Instead, other -
more technical — tools have to be employed.

In the following, denote by {{} the iterates corresponding to ¢, ie., 2§ = Ry’
The two Lemmas 3.7 and 3.8 below provide the central inequalities for the norms of
the residual y° — T'z¢ and the error TTy — x{, respectively. As can be seen from these
bounds, the numbers |p}(0)], £ € N, essentially determine the rate of convergence
and divergence of the iteration. Estimation of this “modulus of convergence” therefore
amounts to an important task in the analysis of conjugate gradient type methods.

It must be emphasized that the inequalities provided by the two lemmas are not
valid for conjugate gradient type methods which work with T7* instead of T'. Never-
theless, the proofs can readily be extended to cope with this different situation; the
corresponding results arc stated in subsequent remarks.

*In this form, Assunption 3.6 applies for selfadjoint and non-selfadjoint operators T
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Lemma 3.7 Consider the iterates zi of a conjugate gradient lype method with pa-
rameter n > 1 and right-hand side y*. If the exact right-hand side y belongs to R(T)
and if K = o0 then
limsup fly* — T3]l < iy — Il -
k—oo

If y salisfies Assumption 3.6 then one has

Hy = T2ill < lly — o'l + clpk(0) ', 1 <E< k. (3.6)

Proof. Let {A\;1}_, denote the zeros of p; again. Consequently, pi(A)/(A — A x) is a
polynomial of degree £ — |, and the orthogonality of {pi} gives

Pr o pe(M) 8412
0=|p, ———1n = ] A ——— 2 d|F ,
(2. _)\I’k] ) 5 - [ESV/R

or equivalently,

/\l,k /\"‘ o )
2. X A\E 62 _ 2 by n=1 5 2'
LR s e = [T R0 A B

Since A/(h — Apx) = 1 for A > Ay this yields

n 20

ALk X
2 A §112 > 2 n—1 % § 2.
fﬂ Pil )Al,k—A dlExy’lI* = [A,kpk()‘)«\ d|| 52y

Al

Consequently,
ALk oo
= Tafl® = [0 A + [T A0 dIEy
Ak —fn— ke -
< [ B+ XL [T RO Al
1.k
LTS A A
< 2N (14 (=) 512
< [0 (14 ) s
ALk A
< 2 .: d112
S A O e Ve LAV
Introducing
or(A) = pe(N) A )”2 0<A<A (3.7)
ﬁpk L pk Al'k o A L] —_ = Mk .
the above inequality can be rewritten as
l15° ~ T2ill < | Baasor(TW) - (3.8)
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Note that ¢} is bounded by 1 in [0, A1 4]. It therefore follows that

lly* = T

< B0 -0l BTl
< Ay =91l + liBa s T2

Using elementary calculus it is easily seen from (3.7) and (2.19) that for v > 0 the
maximum of A¢i(A} in [0, A;z] is attained at A = A, which is given as the unique
solution in {0, A ) of

It follows that

k k

1 1 ,

v 2 A 1 2 Ao = Alpi(0)],
SNk A

cf. (2.19). Thus, A. < v [p,(0)]! and one obtains
WeHA) < AQHA) € IO, v >0, 0< A< M. (3.10)
Inserting (3.10) with v = 2, {3.9) can be estimated as follows:
fy' ~ Taill < fy — vl + 2[00 [l -

Thus, since |p}(0)| — oc as & — oc, the assertion on the limit superior of |jy® — Tzd!!
follows.

If Assumption 3.6 is satisfied, i.e., if £ = T#w with ||w|| = w, then one proceeds
in the same way: (3.9) and (3.10) with v = 2u + 2 yield

19 =728l < Iy =31 + 1B TIT 0] < = 1+ 20+ 2P 0)]
and the proof is complete. 0

Hemark. Under the assumptions of Lemma 3.7 the following estimate for conjugate
gradient type methods working with 11" instead of 7' can be proven in a similar way:

iy — Talll < lly — || + e lp,(0)~ /20

To prove this one may assurnc without loss of generality that y* lies in the closure
of R(T). Then the proof is very similar to the one given above: replacing T" by T'T"
everywhere, one obtains

ly® — Talll < [ Ba nes(TT 0
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To obtain the desired inequalities one only has to use different values of v in (3.10),
e.g., v =p+1 instead of 2u + 2.

The next result estimates the error 71y — x§.

Lemma 3.8 Consider a conjugate gradient type method with parameter n > 1 and
right-hand side y°. Assume that y satisfies Assumption 3.6. Then, for 0 < k < &,

[Tty — 2l < el o™ + [0 lly = ¥°II) (3-11)

where
pi. == max{|[y* = Txd)l, lly — ¥°II} . (3.12)

Proof. Consider first the case & = 0. By virtue of Assumption 3.6 the interpolation
inequality (3.5) yields
1Tyl < Jlaslf /4 gl /et

Since iyl < 148l + iy — ¥°|l < 2po by the definition (3.12) of po, this yields
ﬁTTyH < oufutl wl/u+1pg/,u+l 7

proving the validity of (3.11) for k = 0.
For k > 0 let ¢ be such that

0 <e < p(0)7Y, (3.13)

which in particular implies that £ is smaller than A4, cf. (2.19). Next, introduce
x =TTy and

Tr = g1 (1)y;
it follows that 2 — Z; = pe(T)z. Note that Zj is not the iterate that were computed by
the conjugate gradient type algorithm with exact right-hand side y, since in general
this would result in a different polynomial g;_;. Using &, one obtains

le—all < Bz =Dl + 1 - £ - 2]

< Bz — &) + | Be(@e — 2D)|| + 7 |(1 — B)(y — T})|
< N Eepe(T)T#w)| + || Eeqear(T)(y — v*))| + &7y — Tl
< XM pagw + g (Mo lly ~ &l

+ e MUy’ — Tagll + lly — o).

Since € < Ay, pr s convex in [0,¢] by (2.19), and hence
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0< g = BN <o, 0cace (3.14)

Furthermore,
0< MmN e, 0<A<e.

This, together with the definition (3.12) of pi, results in the following bound:
e — 2gll < w4+ 267 i+ [BL(0)] lly — &°)- (3.15)

Note that the right-hand side of (3.15) is a decreasing function of ¢ in (0,e.) and
increasing in {c., 00), where ¢, is determined through

ghtl =

=~
£®

Taking (3.13) into account the estimation of (3.15) splits into two different cases as
follows: first, if e, = [p}.(0)|~! then let ¢ = [p}(0)|7! in (3.15), which yields

llz = <&l < 1p(0)]*w + 2(p4(0)low + 14 (O)] lly — °].-
Lemina 3.7 and the definition (3.12) of p, imply that
ox < lly = o7l + elpk(0)] 7w

Combining these two estimates for the case when £, > |p,(0)|7? it follows that

IA

elpk () *w + 3ipi (0)] Iy — ¥l

< cetw + 303 ly — )l

o —

= ew MH L3Oy - )L
On the other hand, if . < |p}(0)|~" then one can choose € = <. in (3.15) to obtain
lz =2l < ehw+ 26T pe + IO ly — ¥
1
= e H o I (O]l — vl
Thus, in any case (3.11) holds true. 0

Combining the two lemmas one obtains the following result which contains the
aforementioned bound for the convergence rate of conjugate gradient type methods
for ill-posed problems with exactly given right-hand side y € R(T") as a special case.
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Corollary 3.9 If y satisfies Assumption 3.6 and ||y — y°|| < 4, then the iteration
error of conjugate gradient type methods with parameter n > 1 is bounded by

1T — 25 < e(p(0)|*w + [pi(0)I8), 1<k <k, (3.16)

Proof. Inserting (3.6) into (3.11) one obtains
1Ty — 231l < e (O + IO 6 + wHeHa o) k21,
Since there is & constant ¢ > 0 such that
W BHLR L o hy 4 15) for every ¢t > [,

(3.16) follows. ]

A discussion of this result is necessary. While the first term on the right-hand side
of {3.16) goes to zero as k — oo, the second term will diverge to infinity. For smaller
values of k, however, this diverging term is of the order of § only, and therefore the
iterates scem to converge in the beginning: simply speaking, the iteration process
does not “see” any data perturbation. After a while, both terms on the right-hand
side of (3.16) have about the same order of magnitude, and from that point onwards
the propagated data error dominates the total error. The iteration diverges. This
effect is called semiconvergence, and can nicely be seen in numerical examples, e.g.,
in Figures 5.4 and 6.7.

Remark. The crror of conjugate gradient type methods working with TT™ instead
of T can be estimated with much the same technique. There is only one additional
difficulty, as it becomes necessary to estimate A 2g,_;(A) instead of gu_;{A), cf. (3.14).
The required estimation goes as follows:

0<g, =200 pop <o), o<ase.

Eventually, this leads to the following bound for the iteration error, valid under the
same assumplions as in Lemma 3.8:

1Ty = afll < @A L Oy - 1)
Corollary 3.9 holds accordingly with |pi(0)| replaced everywhere by |p¢(0)[}/2.

3.3 The discrepancy principle

In 1966, MoOROZOV [56] suggested the discrepancy principle as a means for choosing
the regularization parameter in Tikhonov regularization. Roughly speaking, his idea
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was to put up with an error of magnitude § in the data fit of the computed approxima-
tion, to prevent unwanted magnification of noise components of the right-hand side.
In the context of iteration methods, the discrepancy principle defines the following
stopping rule.

Stopping Rule 3.10 (Discrepancy principle) Assume ||y —y®|| < 4. Fiz 7 > 1,
and terminate the iteration when, for the first time, ||y* — Tzl|| < 74. Denote by k(§)
the vesulting stopping indez”.

According to Lemma 3.7 the discrepancy principle always determines a finite stop-
ping index k(d) if k = co. If & < co then it is easy to see that &(8) < & since

ly” = 23l = fpe(T)’ll = I1Ba’ || = [ Eoly’ - p) < 6

from this the claim follows because 7 > 1.

It should be pointed out that Stopping Rule 3.10 applies to both types of iteration
methods: those of Section 2.1 and those of Section 2.3. Note that the residual rp =
y’ — Tz{ is computed anyway in Algorithms 2.1 and 2.3; to obtain its norm, only one
additional inner product is required. Hence, the stopping rule is extremely efficient.

It will be shown next that the iterate determined by Stopping Rule 3.10 has order-
optimal accuracy, 1.e., that the error bound (3.17) holds true. In other words, it will be
shown that conjugate gradient algorithms (with parameter n > 1) are order-optimal
regularization methods, if the iteration is stopped according to the discrepancy prin-
ciple.

Theorem 3.11 Let y satisfy Assumption 3.6, and let ||y —y®|| < §. If the conjugate
gradient type method (with parameter n > 1 and right-hand side y*) is terminated
after k(8) iterative steps according to Stopping Rule 3.10, then

“'I”Ty _ ‘Ei(ﬂ)” S cwl/p+15u/r.t+l (317)

with some uniform constant ¢ > (.

Proof. For the sake of notational simplicity, let always be & = k(4). As mentioned
above, k is never greater than «, hence Lemma 3.8 applies at the stopping index. This

yields
1Tty — 2}l < ew!/e+a/mtt 4 |pi(0)]4).

To prove the theorem, it remains to show that there is a uniform constant ¢ > ) with

P(0)] < cw/é) /et (3.18)

*Actually k{6} depends on y° and on 4, rather than on § only; however, this dependency is not
important for the subsequent analysis.
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When & = 0 then this is obviously fulfilled, therefore assume & > 1 in the sequel.
First, note that by Lemma 3.7 and Stopping Rule 3.10

78 < |ly* = Thyll < &+ elpy (0)] 7N,

where the right-hand side has to be understood as +oc for k = 1. Consequently, (3.18)
holds with & replaced by &k — 1, 1.e.,

s (O)] < c{w/8)1#H (3.19)

The remaining part of the proof is divided in three steps; the idea is to write
pL(0)] = [P, (0] + | (0) — pi_, (0)], to use (3.19), and to estimate the expression in
Corollary 2.6 to cventually verify (3.18).

Step 1. First, it will be shown that there exists ¢ > 0 such that
[Pro1, Phot]no1 = 8% (§fw)in el (3.20)

Note that this is always fulfilled if » = 1 by the definition of k¥ (with ¢ = 7%). For
n > 1, fix € = (c.0/w} /¥ with a sufficiently small constant ¢, > 0, so that ¢ is
smaller than the smallest root A; 1 of pi_1; such a choice of ¢, is possible by virtue
of (3.19) and (2.19). This in particular implies that

0<pe-1(A) <1, 0<A<e,

For £ as defined in Stopping Rule 3.10 follows

8 < |pea(TW|
< N Eepeai (TN + (7 = Epa—r (T
< NELP| + e TR — Epe-r (TYTH V2|

< NE| + e p_y ey 1V

Using the definition of £ and Assumption 3.6, the first term on the right-hand side
can be estimated in terms of 4, namely

WES) < NE(y® — )i + ||ET# w)) <6+ T 'w=(1+c)8, (3.21)

so that
[pk-l’Pk—l]]/21 >(r—1—c)dcm 2,

Choosing 0 < ¢, < 7 — 1, and inserting the definition of ¢, assertion (3.20) follows.

Step 2. In the second step, an upper bound will be derived for [pr_1,pr—1]n—1; the
upper bound depends on the polynomial pL“_ﬁ”, l.e., the residual polynomial of the
conjugate gradient type method with parameter n+1. To avoid confusion, the residual

polynomials of the algorithm under consideration will therefore be rewritten again by

47



{7} in the sequel. The bound to be established helow is given in the following
inequality, valid for some ¢ > 0:

P, P Jamr < c(w/8)Mert [pl il pl ) (3.22)

By Corollary 2.7 p[n+l](/\) is positive in 0 < A < )\ﬂ_l, where — using superscripts
again — )‘[1,15—1 denotes the smallest root of pgﬂl. Hence, as in Step 1, if € is chosen to
be & = (e.d/w)/#*! with ¢, sufficiently small, then

0< Pi"_i”(h) <1, 0<A<e. (3.23)
I'rom the optimality property of p , therefore follows that

,iT(n_l)/gpgcn_]l(T)yEH < ||T{n—1)/2p£:1_-l-11](T)y6”

< NEpIRUTIT D28 | 4 )|(1 = B (T)T=1%8)|
< BI04 272 (1 = EDpIH ()T
< EPTEY |+ ()T

|E-¢*|| can be estimated as in (3.21), hence

P PEL T < (1 4 e )etnti2g 4 g 12 [pletl plntilize, (3.24)

n

Ior m = 1 the stopping rule definition of & allows to estimate J from above by

[pg] l,pLI] 1] ? /71 inserting this into (3.24) one obtains

l+c5 _
(1~ ==yl o < e Lol )y

Thus, choosing ) < ¢, < 7 — 1 and inserting the definition of ¢, (3.22) follows for
n =1 In > 1 then (3.20) can be used to cstimate e(*~1/2§ in (3.24) from above,
hence

Pl o Jams € 2(1 4 )2l [l P ) 2e Rl ple Y

As n > 1, the factor in front of the first term on the right-hand side can be made
smaller than 1/2, say, by choosing ¢. sufficiently small; combining terms, this leads to

1 n —1r [n+1] [n41
2 EanUpEc]lﬂ— < 2 1[p5c+1]5 [ 1]}n:

and (3.22) follows from the definition of ¢.
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Final Step. Using (3.22), Corollary 2.6 yields

T
[Pﬁw-:]ﬂ k{nljl}]l SC(“’/‘S)I/”H-

k—1 2 Pk—1

0 < g3 ,(0) — () <

Together with (3.19) and the triangle inequality, (3.18) follows and the proof of the
theorem is complete. a

Remark. Tt is obvious from the remark following Corollary 3.9, that in order to prove
the same result for the conjugate gradient type methods of Section 2.3 one has to
show

P (0)] < c(w/8)*i
instead of (3.18). This is eastly established with the same arguments as above when
choosing & = (c.8/w)?/#+! instead.

~ Although Theorem 3.11 only considers data salisfying Assumption 3.6, it can
nevertheless be used to conclude that Stopping Rule 3.10 leads to converging ap-
proximations of Ty, regardless whether Assumption 3.6 holds or not.

Theorem 3.12 Let y € R(T) and |y — ¢°|| < 8. If the stopping indez k(§) for
a conjugate gradient type method with parameter n > 1 is determined according to
Stopping Hule 3.10 then wi(g) — Ty as 6§ = 0.

Proof. The idea of the proof is to consider y* as a perturbation of (I — E.)y with
a clever choice of £ = (). Let 7 > 1 be the parameter in Stopping Rule 3.10; with
this, define

1 -1
£(8) =5 inf{e > 01 Byl > TTCS}? §>0.

Since y € R(T), E.y — 0 as ¢ — 0, hence £(4) is strictly positive and the additional
factor 1/2 in front of the inf guarantees that [|E.gsy|| < (7 — 1) 4. In the sequel, the
argument of ¢ 1s omitied for notational convenience. It follows that

T+ 1

= By = °ll < lly =4Il + | Byl < §=:3

Introducing 7 = 2r/(7+1) > 1, one has 7é = 74, and hence the discrepancy principle
returns precisely the same stopping index fc(g) = k{4), when applied with parameter
# instead of 7 and data crror bound § instead of 4.

Note that T1(I — E,)y € R(T*) for every u > 0, namely THI — E.)y = T*w, with

fe} [8,9)
el = [~ a2 By < e [T AR Bl < 5Ty
e+ e+

It therefore follows from Theorem 3.11 that

49



||Tf(f - Es)y — wi[&'}“ < E”wsll 1/#+15#/#+1 < 6(5/5)#/,&{-1 ||T?y|| 1/u+1 :
and consequently,
177y — afig)ll < BTyl + e(8/e)/=+H || 1Ty || st

Tt remains to show that §/¢ — 0 and E. Tty = 0 as § — 0. If lime(8) = gg > 0 as
d — 0 then this is obvious, since

1
1EZ20yll < 1Byl < 5(r —1)8
for every é > 0. This implies
0= Byl = |1 B Tyl = Lim [ BTyl -

On the other hand, if ¢ = 0 as § — 0 then, by definition of ¢ = £(4) and the continuity
of I, from the right,

T—1

8 < || Baeyll < 2| E2cTHylf

hence, &/ < 4(r — 1) Eo.TTy||. Since € — 0, the assertion follows. |

Remark. For conjugate gradient ivpe methods with TT* instead of T one proceeds
similarly. Since in this case [Jw.|| = Q(e~*/?) one eventually has to show that §2/¢ — 0
as § — 0, which follows from the same argument as above.

Note that the “approximate preimage” T7(7 — E. )y occurring in the proof of Theo-
rem 3.12 is nothing else than the familiar truncated spectral expansion approximation
mentioned in (2.15).

3.4 A heuristic stopping rule

While the discrepancy principle provides an efficient (and simple) stopping rule when
an upper bound § for the perturbation ||y — v°|| is available, difficulties arise when
there is only incomplete information about the magnitude of the perturbation. In fact,
in many practical applications this is the case. This justifies the increasing interest
in so-called heuristic stopping rules that avoid any knowledge of & as opposed to
order-optimal stopping rules which require knowledge of § to guarantee order-optimal
error bounds. With a heuristic stopping rule the stopping index & depends solely on
information gathered in the course of the iteration, and therefore only on the right-
hand side y°.

One possibility for constructing a heuristic stopping rule originates from a compari-
son of the error estimate (3.16) of Corollary 3.9 with the inequality (3.6) of Lemma 3.7.
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The idea is to consider these inequalities as equalities, motivated by the fact that both
bounds are reasonably sharp. This suggests the following approximation, which should
roughly hold up to a multiplicative constant, namely

ITYy — =il ~ [pk(0)] lly* — T3l
and respectively for the algorithms of Section 2.3 using T7™:
Ty — <] ~ [P0y — Tz -

The right-hand sides can easily be computed in the course of the iteration, cf. recursion
(2.11) for [74(0)]

Note that the residual norm factor in these error estimates decreases towards the
noise level as k —» oo (¢f. Lemma 3.7) whereas the other factor fends to infinity.
Therefore, for large values of k, |p}{0}]§ and {p} (0)|}/%4, respectively, will be reasonable
approximations of the right-hand sides, showing that these estimates typically diverge
as k — oo. This is the basis for the following stopping rule.

Stopping Rule 3.13 For conjugate gradient type methods as considered in Sce-
tion 2.1 compute

o=yl = POy’ - Taill, k21 (3.25)
for the methods of Section 2.3 compute instead
mo= g’ =[O Nl Tail, k21,

In either case terminate the iteration after k(y®) steps, provided mys < mi for all
0<k <k,

In spite of the aforementioned motivation it can occur that the sequence {n;} has
no global minimum at all, i.e., 7z —» 0 as k& —» oo. In this case the above stopping
rule fails. For actual computations one anyhow has to relax the stipulation that nys)
is really the global minimum. Instead, one will typically perform a few look-ahead
steps to achieve certainty whether a local minimum of {#,} is likely to be the global
minimum. Finally, the global minimum may be zero, i.e., ||y° — Tx‘;c(y,;}H vanishes; in
this case, l‘i(y.s) = T7y® and it depends on the perturbation y® whether this is a good
approximation or not (compare Section 2.6). Otherwise, the following error bound can
be derived.
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Theorem 3.14 Let y satisfy Assumption 3.6 and let ||y — 5] < ||y If Stopping
Rule 3.13 determines a finite stopping inder k(y®), and if §, = |ly° —~ T:ri(y,,}[[ #0
then

it il ”y — yJH gl pfutl

1ty = sl < et + =Lyt s (3.26)

*

where p. = maxq|ly — ¥°||,4.}.

Proof. Assnme without loss of generality that ||y — y®|| = §. Since p, = 0, (3.25)
immediately implies

L (O’ — Tzl < for every k € Ny,

Hence Lemma 3.8 yields
: 8
1Ty = 2ol < e (@0 Iy (009) < e(@!oH i 4+ = myny) , (3.27)

and it remains to estimate ny,qe). By definition, 6y < nk(s), where k() denotes
the iteration index chosen by Stopping Rule 3.10. Two cases must be considered: if
k(8) = 0 then {|z°ll < 76, and it follows readily from the given assumption § < ||yl
that

Ty < 'l < 78 S 7llyf1urtgnlort < pptfuttgulutt {3.28)

if £(8) # 0 then (3.18) yields the same hound:

i) < |Phisy (0)] [9° — Tafigyll < er (w/d) /¥4

Inserting this into (3.27) completes the proof. O

In principle, this result allows an a posteriori justification of the stopping index
k(yaj by computing d,: if §, has about the expected order of the noise level then
Theorem 3.14 shows that the error has order-optimal accuracy. On the other hand, if
&, is seemingly too large, then the right-hand side of (3.26) will stagnate. More critical
situations arise when 4. is much too small, i.e., when k(y*) is too large. In this case
ly — || /4. will blow up and the approximations may diverge.

Of particular interest is therefore the following case study. Assume that the closure
of the range of T is a proper subset of X, and that the perturbation y — y® has a
nontrivial component along the orthogonal complement of R(T),.1.e.,

I = P)y =)l 2 vy =l #0 (3.29)
for some v > 0. Since y € R(7T") this obviously implies

Il = Tall 2 (7 = PY = Tad)ll = (7 = Pl 2 ally =o'l (330)
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‘This guarantees that the stopping index k(y°) of Stopping Rule 3.13 is a well-defined
finite number, and d, as defined in Theoremn 3.14 is always greater than v{ly — y*l].
Therefore, the following corollary is valid:

Corollary 3.15 If, in eddition to the assumptions of Theorem 3.14, (3.29) holds for
some y > 0, then the iterate :ci(yé) resulting from Stopping Rule 3.13 satisfies

T 3 C 1/l +1
I = @il = S futt pulitt
where p, is as above.

Even more can be said, and it must be pointed out that the following result does
not require that Assumption 3.6 holds:

Theorem 3.16 Let y € R(T') and let {y°}sw0 be a sequence of perturbations of y with
y® =y as § = 0 in such @ way that (3.29) holds uniformly for some ~ > 0. If k(y%) is
determined by Stopping Rule 3.13, then lhe ilerates Ii(yé) converge to Iy as § — 0.

Proof. Consider first the case y = 0. The definition of 1;,¢, and (3.30} yield
1y =¥l = 10 = mugyry = ymax{1, |piey (O} ly — »°Il.

It follows that |pj +(0)i < 1/7, indcpendent of y?, hence (3.16) yieids
c
71y — 250l < lphn (O] ly — ¥l < ol y'll.

Thus, if y = 0 then z} 5 — Tlyas § — 0.

The proof for y £ 0 will be given in two steps: first, it will be shown that p, — 0
as & — 0; then, convergence follows eventually with the help of (3.26). In bolh steps,
the key argument is an approximation of y by elements in R(T#*!) like in the proof of
Theorem 3.12, namely by ({— E.)y = T, e > 0. Here, i is some arbitrary positive
number that will remain fixed throughout the proof. Recall that for p > 2ijy — ||
(note that y # y® by virtue of (3.29)), & = (p} can be constructed as in the proof of
Theorem 3.12 in such a way that

I = E)y =4Il <o, (3.31)
and, when § — 0 and p — 0 subject to p > 2|ly — 4°||, one has

EJAY% =0 and  |w.||Yetipr/att 50 (3.32)

Step 1. Let p, be as in Theorem 3.14; the aim of this first step is to show that p, — 0
as § -+ 0. For § > 0 and right-hand side y*, construct & = ¢(p) as above with
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&
p=2ly—v°ll.
Consider the iteration index k(p) as determined by the discrepancy principle (with

some fixed 7 > 1). {I — I, )y salisfies the assumptions of Theorem 3.11 by virtue of
{3.31). Therefore, cf. (3.18),

Iy* = Taill < 27lly = 4fll,  1Phn(O)] < ellledlt/p) /41
Consequently,

) { ly* — Tai,ll < 27 lly -l k(p) =0,
ko) =
’ P (O 1y° = Tl < er Jlwf| e prfatt, k(p) # 0.

By (3.32) the right-hand side goes to zero as § — 0, showing

H-

T}k(yﬁ) S ﬂk(P] —3 0, 5 —r 0.
Since &, = ||y* — Txi(yg]” < gysy by virtue of (3.25), 6, — 0 as & — 0 and therefore
ps — 0 as 6 — 0, which was to be shown.

Step 2. Iu this second step, let £ = £(2p.) be such that (3.31) and (3.32) hold with
p = 2p..; recall that 2p, is greater than 2|y — y®|| by definition of p,. Since it has been
shown in Step 1 that p. — 0 as § — 0, it follows from (3.32) that E,y — 0 as 6 = 0.
Since y # 0 in this part of the proof,

W= EJy— o'l < ly =4Il + 1Byl < 17— Byl

for & sufficiently small, showing that (I — FE.)y satisfies the assumptions on y of
Theorem 3.14. Hence, (3.26) yields

B g
W= Byl g rsiwrgetonn (3.39)

HT*(I_EE)y_"Efc(yJ]H SC(1+ 5 *

where, cf. (3.31),
por = max{ (I — By — vl .} <%,
By virtue of (3.30) ||y — v®ll < 4./v, hence (3.31) implies

2
10 = By =1l < 2. = 2max{ly - 47).4.) < Z4..

Inserting the previous two estimates into (3.33), one obtains
1T = By~ il < elfu 14247,
and it follows that
1Ty — zhysyll < 1Ty =T = Byl + 1T = Ec)y — 2he)l
< BT Y|l + ¢ a4 2l

Since p, — 0 as & —+ 0, the right-hand side converges to zero by virtue of (3.32), which
completes the proof. O

The modifications of the proof for the algorithms of Section 2.3 are straightforward.



Notes and remarks

Section 3.1. The observation that the iteration error for the classical conjugate
gradient method decreases monotonically can already be found in HESTENES and
STIEFEL [45]. The idea to use Lemma 3.1 (due to ASKEY [3]) for proving Theorem 3.2
goes back to BRAKIAGE [6]. Both results can be extended to noninteger values of m
and n, cf. TRENCH [80].

GILYAZOV [22] (see also [24, p. 40]}) was probably the first to come up with a
proof of Theorem 3.4 for the important case n = 1. It is his proof (rewritten in
terms of orthogonal polynomials) that is presented here. A different proof using ar-
guments similar to those of Section 3.2 was subsequently given by NEMIROVSKII and
PoLyak [59]. Partial convergence results have been obtained earlier by KAMMERER
and NASHED [46]. LARDY [51] extended Theorem 3.4 to all n > 1.

Section 3.2. The exposition of this section follows NEMIROVSKII [58]; sce also
PLaTO [68]. Those authors only treat the case n = 1, but also consider perturba-
tions (resp. discretizations) of the operator 7'

Section 3.3. The order-optimality of the discrepancy principle for MR and CGNE has
been proven by NEMIROVSKIL [58] with a different argument. It should be remarked
that GILYAZOV [23] obtained suboptimal convergence rates for a modification of the
discrepancy principle at about the same time. ALIFANOV and RUMJANCEV [1] estab-
lished earlier the regularizing properties (but not the order-optimality) of a somewhat
different stopping rule for CGNE.

Theorem 3.12 is due to PLATO [67].

Section 3.4. Stopping Rule 3.13 has been suggested in [40]. The computation of
|pi(0)] for diagnostic purposes has first been proposed by Louis [54]. Concerning
heuristic stopping rules in general, BAKUSHINSKII [4] has shown that one can nev-
er design a regularizing algorithim with no prior knowledge beyond the given data
y’. Nevertheless, as can be seen from Theorem 3.14, regularizing properties can be
restored under certain conditions. An earlier result with a similar flavour (but in con-
nection with a heuristic parameter choice rule for Tikhonov regularization) was proven
by LEoNOV [52].

Other heuristic stopping rules for CGNE have been considered by HANSEN [42]. No
error bounds are known for these methods.
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4. Regularizing Properties of ¢G and CGME

The analysis of €6 and CGME leads to new difficulties, and some of the main results
turn out to be different from those of the previous chapter. In the first section of
the present chapter it will be shown that ¢G and CGME diverge whenever y ¢ R{T');
recall from the remark following Theorem 3.4 that CGNE converges to Tty for all
y € D(T1). Other differences concern the behavior of the residuals. In Example 4.3
it will be shown that the norm of the CG residuals does not decrease monotonically.
More siriking, the discrepancy principle (which is based on the residual norm) does
not regularize CG (CGME): a counterexample is constructed in Section 4.2. A different
stopping rule is easily implemented, though, providing order-optimal accuracy for the
resulting approximation. There is also a heuristic stopping rule in analogy to the rule
in Section 3.4.

4.1 Monotonicity, convergence and divergence

The first two results of this section establish very similar convergence results for ¢G
and CGME as have been obtained for the other conjugate gradient type methods in
Section 3.1.

Theorem 4.1 Ify € R(T) and {z;} are the iterales of GG or CGME then ||TTy— 2]
15 strictly decreasing for ¢ < k < k.

Proof. Since Ty — zp = pp(T)T'y one has [Tty — 24]|? = [ps,pi]-2 for ¢G and
NTTy—2x||? = [pr, px)-1 for CGME, respectively. Here, py = p,{ko], and hence the assertion
follows from Theorem 3.2. O

As in the previous chapter the convergence of cG (CGME) follows from the mono-
tonicity of the iteration error.

Theorem 4.2 Ify € R(T) then the iterates of CG (CGME) converge to T'y.

Proof. Let y € R(T) and = = TTy. If the iteration terminates for some finite &
then the staternent of the theorem is true; see Section 2.1. Therefore, assume that the
iteration does not terminate. In the case of CGME Proposition 2.1 holds accordingly
for n =0, i.e., il gx € IT] then
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| Ty — 2ll® = [P, prl-1 < [@re 4] -1 -

Choosing x(A) = (1 — A)* one obtains [k, wi]-1 = ||[(I = T*T)* 2|2, which converges
to zero as k — oo by the Banach-Steinhaus theorem. The assertion is therefore true
for caME. The proof for ¢G is the same as the one of Theorem 3.4. O

There are well-known examples, however, which show that the residual norm need
not decrease monotonically during the ¢a (CGME) iteration. This is different to the
other conjugate gradient type methods, cf. Corollary 3.3 (¢). One such example is the
following.

Example 4.3 Let T be selfadjoint positive definite with eigenfunctions v, and wv,,
and
Ty =rv, Tuvp = v, <t <],

Choosing y = nvy + v, one has for p(A) =1 — ) € I
2
Pl = (L= + (1= [pplo = T = y7P + (1= 2)".

From the fact that the residual polynomial p of ¢G minimizes [p,p].1 among all
p € II? one finds v = (1 + n*)}{1 4+ p*r)7!, ie,,

1+ :r,v2
Ay=1- A
pl( ) 1+n2T
Consequently, one has
: L+7? 1492 2 2 1 =T 2
—Tzy||* = =il ~ —— 1- = (1 ,
ly — Tzill” = [pr,p1)o = n°( 1+n277) +{ 1+n27) 7°( +n)(1+nzr)
whereas ||y — T2ol|® = ||y]|2 = 1 + 5% Thus, when 7 is sufficiently close to zero and

n > 1 it follows that

ly — Txoll < |ly — Tzl & 5lly — Tl -

Finally, consider the following divergence result, and its difference from the corre-
sponding Theorem 3.5 for conjugate gradient type methods with parameter n > 1.

Theorem 4.4 Ify ¢ R(T) and {z4} are the iterates of CG (CGME) then either
k < oo and the iteralion breaks down in the x + 15l slep with division by zero, or
k=00 and ||z)| = oo as k — oo.

Proof. Assumc first that Py # y, i.e., Foy # 0. If || E,yl|? has just a finite number &
of positive points of increase, then the iteration breaks down in the x + 1st step, see
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Section 2.1. Otherwise, by virtue of (2.19), |pi{0}| = k, showing that the cG-iterates
xx diverge to infinity in norm:

lzell = qe-1(0) | Eoyll = [pk(0)} [ Eoyll — o0, & — oo,

For cGME a different argument is required, since xy = T*gy_(TT*)y has no compo-
nent in A(7). Expanding gc_; in the basis {py]} gives

k=1 | (1
%1251
W= [i] Pit
i=0 { 3 » P J ]1
and hence,
2 - gr- 1aP;]]2
el ® = [gr-1, gr—2]r = Z {1] . (4.1)

i=0 [pJ Py
Since gy = (1 — pi)/ X, cf. (2.2), (2.23) implies that,

lgee, P = 1,200 = %, oMo = [1,6M)e = (1, pe, 0 <G < k.

where the right-hand side can be estimated from below by
7 e = AT 2 (Bl 0 <k

Inserting this into (4.1), Lemma 2.4 yields, cf. (2.21),
|F0y 2
[ ||2>Z o, = 1l P AL
', 1

By Proposition 2.1 [pl?! |, pl? ], tends to zero as k — oo, and hence, |jzx|| — oo as
was to be shown.

Assume next that y belongs to the closurc of R(T'). In this case the orthogonality
of {p} implies that [ge_ l,pJ Ny =1/, pmh, 0 <7 <k—1, and hence (4.1) can be
rewritten as _ Ap (11
[Gk-1, qe—1]1 = Z /2, [1]]]

= P p
Note that the terms on the right-hand side are independent of &, and therefore the
numbers [gi—1,qk-1|; are nondecreasing {as function of k). Assume next that the
sequence (4.2) remains bounded: this implies that the formal series expansion

(4.2)

= 11/, p1, 1
1/ "’.Z (1 —[Jllh P

=0 =pj
defines a function 1/A in the topology induced by the norm [+, 4, i.e.,
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[ aiBw) < oo, (4.3)

For CGME, {gk—1, gi—1]1 = ||zk||* and (4.3) is equivalent to y € R(T'), showing that
hounded subscquences of {x:} can only exist if y € R(T"). Thus, the theorem is proved
for CGME. For ©G the argument is as follows: if some subsequence of {z,} remains
bounded then ||72zxi2 = [ge-1, gr-1]1 < ¢ < 0o for all k € N, and (4.3) implies that
y € R(T'Y?), i.e., there exists 2 € X with T2z = y. Furthermore, T'/%z; — z as
k — o0, since gz—1 — 1/ in the above topology. It follows that Tz, — T2z = 4,
On the other hand, when {z;} is bounded then there is a subsequence of {z;} which
converges weakly to « € A, say. Since the corresponding images {Tz;} converge
weakly to Tz, one has y = T«x € R{I"), which gives the desired contradiction. C

4.2 Failure of the discrepancy principle: a counterexample

Let da(t) be the Lebesgue measure.on [0, 1] with an additional unit mass placed at
¢ = 0. Denote by X = L%(da) the space of functions = over [0),1] which are square
integrable with respect to da. Thus, for r, 2 € A the inner product {-,:) is defined by

(z,2) = 2(0)2(0) + [)1 z(t)z(t) dt. (4.4)
Define 7': X — X by
(Tz)(t) = tz(2), e X, te(0,1]. (1.5)
T is selfadjoint, semidefinite, with |7 = 1 and nullspace
N(T)={zeX|z=0ae in(0,1]}.

Note that this is a nontrivial nullspace due to the definition of A, cf. {4.4). The
orthoprojectors of the spectral family {£,} of T are given by Ey = 0 for A < 0,
Ey=fforA>1, and

(i) ={ & 0<r<i.
Comnsequently, for 0 < A < 1,

A
| Exall? = 22(0) +f0 2(t)dt,  d||Exz)|? = 22(A)dA.

For g > 0 one readily obtains (T*z)(¢) = t*z(#), hence the elements of R{T*) can be
described by their behavior near t = 0. For example, 1f v > 0 then

60



0 t=0
Wpy .= ) ) .
z (t) . { tu—l/?(l _ t)_1/4, 0<t<l, (4 6)
helongs to R{T*) for every p < 1.
Let y := 7'z, and consider the solution of the equation
Tr=y. (4.7)

cG applied to this problem will generate residual pelynomials {pEcO]} that are orthog-
onal with respect to the inner product

(oo = [ pOOBO) (L= 277 ), (4.8)

This means that the residual polynomials are translated and rescaled Jacobi polyno-

mials, i.e., )
p[kO](A) — P£2y+l,_l/2)(l _ 2)\)/Pj£2u+l‘_1/2)(0) .

In the remainder of this section the inner product [, -]y always denotes the one in
(4.8), 1.e., it corresponds to precise data y; accordingly, the polynomials {p,[f“]} are
always residual polvnomials of conjugate gradient type methods with right-hand side
y. Note that this notation differs from the other sections where these quantities always
referred to the actual (i.e., perturbed) right-hand side. The reason for this change of
notation is the fact that all residual polynomials that are of interest below can easily
be expressed in terms of pg?].
For § > 0 consider the following perturbation y? of y:

y(0) = { j(s), 622< . (4.9)

Obviously, y* does not belong to R(T) and, cf. (4.4),

ly — o'l = 4.
The residual polynomials of CG with right-hand side y* will be denoted by {p{}. They
are orthogonal with respect to the inner product [-,-1% given by
[0, ¥]° = 8%(0)3(0) + [, ¢o. (4.10)

Proposition 4.5 The residual polynomials p. of CG corresponding to y® of (4.9) equal
ph=py -0, k21,

where
i = 62 [pl L plL 17 (4.11)
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Proof. The statement is proved by checking the orthogonality relations: for 0 < 7 < &
one has

8470 = [k Mo = [ Mo = Balpily, X7 = 05
on the other hand, for £ > 0 and 7 = 0 one has
2k X1 = [Pl 1 = 8°(0) + [ Lo — 9ulpil 1, 1
and the right-hand side vanishes if ¥, = é* [pEll, 1j7". Therefore, (4.11) follows from
(2.23). a

The following lemma states a few asymptotic properties of the residual polynomials
under consideration; a more refined statement of some of these asymptotics is given
in Lemma 5.3 in Section 5.2.

Lemma 4.6 Let [-,-]o be as in (4.8). For fized n € Ny the following asymptotics hold
as k — 00!

(Z) fPLn],pEn]]n ~ k-—4u—3—2n’

(2.’2.) [p[?‘u-}-l ?‘H‘l]] k—4z/—4—271 ,
(5d) PPV (0)] ~ A%,
(tv) M~k

Here, w;p, i3 defined as in Proposition 2.5.

Proof. The assertions follow readily from well- known results concerning Jacobi poly-
nomials, cf. [76, Chapter 4]. Denote by uE:] an orthonormal multiple of pi”]. It is
obvious that

™ 2 = O, e = (0177 (4.12)
Therefore, the growth rate (i) follows from

|l (0)] ~ EPr/24n (4.13)

cl. Equations (4.1.1) and (4.3.4) in [76).
According to (2.21),

k
PP = 3T

j=0

and hence, (i) follows from (z).

Finally, the asymptotics (:2:) and {2v) of pin]'({]) and 7y, respectively, follow from
a well-known identity for the derivative of Jacobi polynomials, cf. [76, (4.21.7)]. O
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In the sequel it will be shown that the norm of the residual
=y - T (4.14)

wil! never reach the tolerance 7é, provided ¢ is sufficiently small. In fact, by Proposi-
tion 4.5,
7 = [ph.pd)
5 4 (o — el ol — Gl o
= &+ [ oo — 2061, ApE To + 9206 B )

Using Propositions 2.5 and 2.8, together with orthogonality relations, one obtains

; 1
[PLO]v Apgﬁl o = {P[D] chl}l ‘P[I]]U
’ﬂ'k—l,
q
= = - A = )
1
= ———(olpd A+ B P 0)
k 1,1
- (1]
Th_1. [Pk 1 Pk ]05
and hence,
20,

I74]1% = 52+[pk,pkllu+ LpE:ka jo+ 92 P e

Inserting (4.11) and the asymptotics in Lemma 4.6, it follows that
||Tf||2 ~ 52 + k—4u—3(1 + 62k4u+4 + 64k8y+8) .
The right-hand side becomes minimal for & ~ 61242 hence
mmin {1 ~ 8701 + 6717249, (4.15)

It follows that Stopping Rule 3.10, i.e., the discrepancy principle, does not halt the
iteration when 4 is sufficiently small. Nevertheless, G diverges according to Theo-
rem 4.4. '

The above argument is easily modified to provide a counterexample for CGME: one
simply takes I' to be the square root of the operator in (4.5) without changing y
{of course, the solution x is then different). In this case, the inner products and the
residual polynomials are the same as above, leading thus to the same restduals.

One might argue that the failure of the discrepancy principle is due to the fact
that ¥ — y° is orthogonal to R(T). This is not the reason, though, as the following
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modification shows, where both y and 3° belong to R(T). Let K : Xx — Xk be a
compact operator in some Hilbert space X (let A be selfadjoint, positive definite and
nondegenerate)}. Consider the product space X'x & X" with the canonical embeddings;
no notational care will be taken to distinguish elements in one of the factor spaces
from the corresponding element in the product space. With T as before, define

r = Ku, r € Ay,

T]{:XK®X_}XK$X’ Tf\:{x — Tl‘ .T.'EKY.

Obviously, the spectrum of T coincides with the spectrum of T up fo an additional
sequence of countably many eigenvalues A; > 0 with eigenvectors v; € Ak, ||v;]] = 1.
Let y = Tz} as before, and for § > 0 and 7 € N define

. 0 0<t<h
S3(4Y — S ’ = 4 g
y (t"&’f@{ g(i2), y <t € RUK:
)
Obviously, _
ly —y* Il =6 +0(1), oo, (4.16)

Denote the spectral family of T% by {F\}. While df| Fi\y||* defines the same inner
product as in the original example, cf. (4.8), the spectral distribution d|| Fay®?||? defines
the “translated” inner product

b = [ o) d Py
= TpOy (1= 4) B0y + (1= 4) )P

(4.17)

here, [-,-]% is as in (4.10). It follows that the residual polynomials {pi‘j} of ¢cG for
Trx =y are given by

A=A s A 0
. 4.

P (N = i

Let {#5')} denote the 0G iterates; looking only at their component in Xx, one
obtains the following lower bound for the iteration error:

. , 5
|2 — 2 = (1 57 ()

J

writing ¢ for A;/(1 — A;), using (4.18) and the mean-value incquality, this yields

: 1 ) 1 § pi(—£) 8
"‘r(l})u_xi,."ll 2 (1_ 5—) i (1___{[,___#) 7:4(:!?L(_5.T_.l|~;.;
pi(—€)] A Ltelp (=)l A L+elp(=8) A

for some & with 0 < & < ¢. Using the convexity of pl in R, it follows that
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o) _ gty 5 POl 5 O

= = . 4.19
El 2 T @y T U ) TN, (419)

Furthermore, by definition of p{, cf. Proposition 4.5, and by Lemma 4.6, there exists
¢ > { such that

PE(0)] = 1A (0) — 9] 2 1A ()] 2 20k, kEN.
Given ko € N, the monotonicity of pi'(0) (as a sequence in k) therefore vields

AU POl 8,
2 Thel > k2,  k>h
T+elp/ (0] 1A ~ THelpl @) 12 = 707 ="

provided j = j(ko) is sufficiently large. Inserting the above into (4.19) finally leads to
||'£M — JriJH > cki$ for k > ko and j > j(ko) - (4.20)

Recall the definition of r{ as given in (4.14), and denote by {rf?} the residuals
of the CG iterates with respect to the modified problem Txz = y*; from (4.17) and
(4.18) follows

| - SN
= [p7, 7)™ = lpk( ) 7*[ph. ph)° = Ipi( —i)l AR
By Y

2

llre?)I* =

and hence, for fixed &, ‘
I TSI LR gy (4.21)

Consider now Stopping Rule 3.10 for some fixed 7 > 1. As shown in (4.15), ||r{||
never drops below the tolerance 374, il § < &g with some & sufficiently small. Fix
& < &y and let kg = ko(d) be given. In view of (4.16) and (4.21) one can choose
Jo = jo(8) > j(ko) (with j(ko) as in (4.20)) such that ||y — y*|| < 26 and

- 2
I > sl = 2r8,  0<k<ho.

The conclusion is the following: since y% € R(T"), the residuals ?‘f,’j converge to zero as
k — oo by Theorem 4.2; therefore, the discrepancy principle terminales the iteralion

for some finite stopping index k(§). Obviously, k(8) > ko, hence (4.20} yields

o) < > e,

Choosing ky = ko(4) ~ &7', this shows that [[:ck""’(ﬁ)H —» o0 as 6 — 0. In other
words, although the dmrrepancv principle termmatcs the iteration, the approximations
diverge as § = 0.
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4.3 An order-optimal stopping rule

The failure of the discrepancy principle for ¢G and CGME may be understood as a
problem of saturation. It is well-known from other regularization methods that a
successful parameter choice on the basis of the discrepancy principle is only possible
if the residuals converge with an appropriate order of convergence. For example, in
Tikhonov regularization this is the case if # € R{|{T|) but not if z € R(|T|*). The
reason lies in a certain sefurafion of the rate with which the residuals converge to
zero.

To construct an order-optimal stopping rule one has to monitor a sequence
{llex(T)y*l} with functions @y that do not share this saturation property. Maybe
the most straightforward choice is @i, = pLU’ in which case ||¢r(T)y| = LI},pLI]]éﬂ,
i.e., the norm of the kth residual of MR (CGNE]).

Stopping Rule 4.7 Fiz 7 > 1 and assume ||y —y°|| < §. Terminate the ¢G (CGME)
iteration as soon as Wly* — T'z}|| = 0, or when for the first time

g (R H e )

Denote the resulting stopping index by k(4).

Remark. Note that it follows from Lemma 2.4 that k(4) is the smallest integer £,
for which [-pg], pgjl]ﬁ,” < 74. In other words, the stopping index of Stopping Rule 4.7
coincides with the stopping index for MR {CGNE) as determined by the discrepancy
principle. Consequently, one always has £(§) < «, and hence the iteration is terminated

before a breakdown can occur.

It has to be emphasized that the norm of the residual y® — T'zf is computed anyway
in CG and CGME, cf. Algorithms 2.2 and 2.4. In the following it will be shown that
this stopping rule makes CG and CGME order-optimal regularization methods.

Theorem 4.8 Let y satisfy Assumption 3.6 and let ||y - 3°|] < 6. If CG or CGME
is applied to y* and terminated after k(4) iterations according to Stopping Rule 4.7,
then there erists some uniform constant ¢ > 0 such that

1T?y = gl < ewtlmtigaint,

Proof. 1In the sequel, k& always denotes the stopping index k(4) as determined by
Stopping Rule 4.7. ¢G will be considered first. Denoting by z} the corresponding MR
approximation after & steps, one has
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17ty = afll < 7ty — 2B+ fat — ol (1.22)

By the remark following Stopping Rule 4.7, the stopping index k is the same as the
one chosen by the discrepancy principle for MR. Therefore, the first term on the right-
hand side of (4.22) satisfies the asserted bound by virtue of Theorem 3.11, and it
remains to estimate z§ — 2§,

Assume z$ # z{. This implies that k& # 0, and that the residual polynomials pLO]
and pE] differ. In view of the remark following Proposition 2.8, (2.24)} applies to the
present situation: denoting by {q,[co}} and {q}:]} the iteration polynomials of ¢G and

MR, respectively, 28 — 23 can be rewritten as

2§ — 2 = (T — (T = o PP (1)y°

Thus, it follows from Corollary 2.9 and Proposition 2.1 that

s osne PRV P, ’ b
2k = 2ell” = =55 o (Pee>Pacdo S |\ T ) [Ph»Piclo- (4.23)
[PHJ PL]l] [P“l Pa]l]
¥ Y

Let £ = (c.d/w)#*! with ¢, to be chosen later. As has been shown in (3.23) in the
proof of Theorem 3.11, one has

o<l (<1, <A<,

provided c. is sufficiently small. Therefore one can proceed as in Step 2 of the proof
of Theoremn 3.11 to obtain

PA LA e = 1EAE (TN + I — £ (1))
(6 + & Hw)? + e[ (T)TV2%2))?

(L+c)?8 e, ol L

1A

[1]

Because of the optimality property of p;”, and the equivalence of Stopping Rule 4.7

with the discrepancy principle for MR,
1 n 1 2 2
5 < bl < 5 B,
Inserting this into the previous estimate one obtains

- (1 +cs)

P o o < e L o

Thercfore, by choosing 0 < ¢, < 7 — 1 sufliciently small, one can find some ¢ > 0 such
that
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[21
[?7?2]1:19;:2] 1]0 < C(w/5)1/p+1 . (4.24)
Pl mlih

Tnsertion of (4.24) into (4.23) provides
ok~ 2l < elw/ &), N

and, since [p, pl)1/2 < 74 by the definition of k = k{8), this vields

|8 — z3]| < erwt/atignlatt
Thus, the statement of the theorem follows from (4.22).

Consider CGME next, and denote this time by {2z} the iterates of CGNE. The
stopping index k = k(&) now agrces with the one obtained by the dismepancv principle
for CGNE and, as above, cf. (1.22), it remains to estimate 2§ — zJ. This time one has

28 — 28 = T (T — T (TT)y = 0, TP (T

and therefore Corollary 2.9 and Proposition 2.1 yield

1 1 o [2]
|24 — .5||2:M13_[ (20 [ <M ) 11]] (4.25)
ko Tk [2] [2] g Pe—1> P10l = T g1 WPk P s
[Piss Pt [Piz1:PEls s

in the CGME case. This is the analog of (4.23) and the remaining part of the proof is
now clear, cf. [35] for morc details. O

In particular, this result shows that ¢G and CGME are regularization methods,
when combined with the above stopping rule:

Theorem 4.9 Let y € R(T') and ||y—°|| < 8. If the stopping index k(3) is determined
according lo Stopping Rule 4.7 then Ii(a) — Tty as § = 0.

The proof is the same, word by word, as the proof of Thecrem 3.12. In fact, this
argument is valid for any order-optimal regularization method (cf. [67]).

4.4 A heuristic stopping rule

As in Section 3.4, the sharp estimates for the iteration error can also be used to
design heuristic stopping rules for ¢G and CGME. In contrast to the order-optimal
rule from the previous section, these rules define different stopping indices than the
corresponding rules of Section 3.4 for MR and CGNE, respectively.
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Stopping Rule 4.10 ZLet o = liy¥]|, and for k > 1 compute

0
"= { PO (g ly? — Tlf~2)7Y7, {y - kall % 0,

in the case of CG, and

W{o Iy - Tafi =0,
L O, Iy — T2l 72, |yt — T2 #£0,

for CGME, respectively. In either case terminate the iteration after k(y®) steps provided
Meyd) < e for all 0 <k < &,

Like the heuristic rules in Section 3.4 Stopping Rule 4.10 may fail since n;, can tend
to zero as & — o00. The following result provides an estimate for the approximation
in case of a finite stopping index.

Theorem 4.11 Let y satisfy Assumption 3.6 and let |ly — 6| < |ly||. If Stopping
Rule 4.10 determines a finite stopping index k(y®), and if Mgy #‘D then the following
a posteriori error bound holds:

&
7 y—y
17y — @il < o1+ | 5 Lyt s,

where

k() /2

= (3 Iy’ - T2t and  p. = max{|jy — [, 8.}
=0

Proof. The proof is only given for ¢G, and without loss of generahty it will be assumed
that |ly — y®|| = d. As in the proof of Theorem 4.8 ||z — z§|| can be estimated by
(4.23) provided k£ > 1. Thus, Lemma 3.8 and (4.22) imply that

+ g /41 _afp+l (1], [PE] 1:33’5@2]1]0
”T ¥y— 3:.!:” < C(L:J Pr + ka (0)i d+ i2] p[2] ] Pk) (4‘27)
k—1'Fk—1

with pi defined as in (3.12), namely p, = max{[pk ,pE] iz ,8}. It follows from (2.21)
that priyé) = po. In the following, the fraction on the right-hand side of (4.27) will be
investigated. By orthogonality,

2 2 1]V
[Pf]nPL]J [Pijl pE}l PE?]]O = Ecllu (PE;L *Pi]) 0)A + )‘zsk—Z]Os
where sp_» is a polynomial of degree k — 2. This yields, cf. (2.23),
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PP Do = R, — oY) [P, ) + [P, skmale = (P, = P (0) L, AT

In other words,

1

CC
1+ P
[mp[ T I%D = pi2,(0) — p¥{0). (4.28)
k—12Fk—1

From (2.19) and Corollary 2.7 follows that |p;c {0)\ & |p1]'( 0l < Ip ’{O)I hence,
inscrting (4.28) into (4.27) one obtains for k = k( %) (provided, for the moment, that
k(y') = 1)

HTTy 7xi( < e{w e+l u/u+1 + ipk(y (UHP*)- (4.29)

If k(y*) = 0 then {4.29) follows immediately from the interpolation incquality (3.5)
which stales that
1Ty — 2dl| = | Tyl| < /ot pp/
and pg coincides with p, in this case. [t follows that (4.29) holds true whatever stopping
index k(y®) is chosen by Stopping Rule 4.10.
The remainder of the proof is similar to the proof of Theorem 3.14. From (4.29)
and the definition {4.26) of 5y, follows

“Tty _ xi(yﬁ)” < C(wl/u+1pf/u+l n J% T?k(yJ)] olw l/#+1pxz/.u+l + (T Uk(ﬁ)) (4.30)
where k(d) is the stopping index corresponding to Stopping Rule 4.7. For & > 0
Propositions 2.5, 2.8, and (4.28) imply

(o) [l (o), Ny [ Py, Py Jo

i ()] = P2y (0) — 2y "(0) = O — memr 2 + [ (0)] < R (0)] + W'

Y13 Pl ]1
Hence, using (3.18) and (4.24) (recall that & = k(4) is also the stopping index obtained
by the discrepancy principle for MR), onc obtaing

ks ()] < e (w/d) /et {4.31)
which yields
Mgy < et w!/etrgelnst (4.32)

For k(6) = 0, on the other hand, (4.32) follows as in the proof of Theorem 3.14,
cf. (3.28). Tnserting (4.32) into {4.30) the theorem follows since p./d. = max{1,4/5.}.
a

Remark. For coMi, two of the factors on the right-hand side of (4.27) come with
a square root: this follows from the remark following Corollary 3.9, and from {4.25)
which replaces (4.23) for cGME. The remaining modifications are straightforward.

Corollary 3.15 and Theorem 3.16 carry over to the presenl situation without any
significant change of proof, except that (4.31) instead of {3.18) has to be used in the
proof of Theorem 3.16. The details are left to the reader.
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Notes and remarks

Section 4.1. KING [47] has shown that CGME converges for precise data. LARDY {51]
comments on the behaviour of the iterates when y ¢ R(T").

Section 4.2. In view of the fact that ¢G {CGME) achicves order-optimal accuracy
{as established in Section 4.3), the failure of the discrepancy principle is surprising;
following a general methodology by Raus [69] - although developed for a different
class of regularization methods - one would expect the discrepancy principle to be an
adequate stopping rule. The particular counterexample constructed in Section 4.2 is
taken from [35]. The orthogonal polynomials used for this counterexample were ana-
lyzed by KOORNWINDER. [48]. Of course, Proposition 4.5 holds for any inner product
[-,]o, compare CHINARA [10].

Section 4.3. The material in this section is taken from [35]. The saturation of
Tikhonov regularization and the resulting suboptimality of the discrepancy princi-
ple has been studied by GROETSCH [30, Theorem 3.3.6]. The same phenomenon has
been observed for the v-methods, cf. {37]; in [37] this has been remedied by using the
residual polynomials corresponding to the v + 1/2-method for the construction of an
order-optimal stopping rule. This is a similar idea as has been used here.

Section 4.4. In principle one can alternatively extend the heuristic stopping ritles
considered by HANSEN [42] for CGNE to €G {CGME). It does not seem to be clear,
though, whether the saturated decay rate of the residuals of cG (caME) will aflect
the behaviour of these stopping rules.
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5. On the Number of Iterations

The efficiency of iterative regularization methods — besides their accuracy - depends
on the number of required iterations to meet the stopping criterion. In this chapter,
in particular in the first section, several estimales are given for the stopping index
which depend on the spectral distribution of the unperturbed right-hand side. It
becomes clear that conjugate gradient type methods are especially efficient when T
is a compact operator. Scction 5.2 presents a refined comparison of MR and CG in a
casc study, namely for the example constructed in Section 4.2. Recall that Stopping
Rules 3.10 and 4.7, respectively, terminate the two schemes after precisely the same
number of iterations, and the accuracy of the two approximations is similar, at least in
terms of powers of 4. The final scction presents some numerical results for an ill-posed
image reconstruction problem.

5.1 General estimates for the stopping index

Consider the stopping indices £(4) as determined by Stopping Rule 3.10 (Stopping
Rule 4.7) for conjugate gradient type methods with parameter n > 1 {(n = 0) in-
cluding, in particular, MR, respectively ¢G. In the following, three bounds for the
asymptotic growth of k(d) as § — 0 will be derived. As will be seen, these bounds
are independent of the parameter n; however, it is clear, that MR will require fewest
iterations to meet the stopping criterion, ¢f. Proposition 2.1.

Theorem 5.1 Let ||y—y’{| < & and k(8) be the stopping index for any of the conjugate
gradient type methods of Section 2.1 as determined by Stopping Rule 3.10 and 4.7 for
n > 1 and n = 0, respectively. If y satisfics Assumption 3.6 then

E(8) < c(w/8)M22 (5.1)

and his estimate is sharp in the scnse that the exponent cannol be replaced by a
smaller one in general,

Proof. Let n be the parameter of the conjugate gradient type method under consid-
eration. Recall that the stopping indices coincide for n = 0 and n = 1, see the remark
following Stopping Rule 4.7. Consider this case first, i.e., let n = 1. By definition, the
iteration is terminated when, for the first time,
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for some fixed 7 > 1. Let k:= k(4) — 1. For v > 0 consider the Jacobi polynomial
pu(A) 1= PLTHED _gny pE B (5.2)
According to [76, Secl. 7.32], ¢, satisfies the following inequalilies:
sl <1, WM ek + )7, (5.3)
uniformly for 0 < A <1 and & € No. Using v = 2u + 2 this yields
e (T < Nlon(T)y = v + llon(THT* ool <8+ ek + 1) 0.
Since k = £{&) — 1 Proposition 2.1 implies
8 < [P, A" < low iy’ < 6+ ck(8) 7w,

from which (5.1) follows for n =1 and n = 0.
Consider now the case n > 2. By virtue of (3.20) there exists ¢ > 0 such that

[, ol 2 62 (8 ) im0t (5.4)
If 154 s chosen as in (5.2) with v = n + 2p + 1 then (5.3) implies that
[Z*o2 (M) < ek +1)7%, 0< A<, ke Ny,

for every 0 < o < v, in particular for « = n — 1. To obtain these bounds for o < v,
one applies the first inequality in (5.3) for A € [0, (k+1)7%], and the second inequality
in (5.3) for the remaining interval [(k + 1)72,1]. It follows that

1T D20 (T < JTU D P0(THY — gl + lloa(T) T2 2y
< (b + 1)+ (k)T

Using (5.4) and the optimality property stated in Proposition 2.1, this yields
(6/w) D232 < h(8)7 (L + R(8) 7 w/6) .
Let ¢ = k(8)***25 /w; then the above inequality can be rewritten as
L S S

and since n > 1 this implies a finite upper bound for ¢; in other words, (5.1) holds for
n > 2 ag well.

To establish the sharpness of (5.1) consider the example (4.7) of Section 4.2 with
no perturbation, Le., y® = y = Tz with ) as in (4.6). By virtue of Lemma 4.6
(recall that n > 1),
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[pL”L pch]]n—l — k—4u—2_2n, b s 0.
for this particular example. Consequently (5.4) yields
k(d) < cs- R e

Since the exact solution z*) belongs to R(T™*) for every v > g, the exponent on the
right-hand side can be made arbitrarily close to —(2y + 2)™! by varying v, and the
proof is complete. DO

The cstimate of Theorem 5.1 is the best possible uniform bound if no further
information on the spectral family { £, } associated with T is available. It will be shown
next that better bounds are possible if the spectral family has specific properties. As
mentioned in the introduction, an important class of ill-posed problems are Fredholm
integral equations of the first kind, where 7" is a compact operator. In this case F)
is constant up to countably many jumps at eigenvalues A; of T'. The following result
shows that much fewer iterations are required for such problerns.

Theorem 5.2 Let T be a non-degenerate compact operator, and let the exact right-
hand side y satisfy Assumption 3.6. Furthermore, assume that ||y — v®]| < 4.

(1) If the eigenvalues of T decay like O(j7°) as 7 — oc with some o > 0 then

k(§) < C(w/(y)l/(wl)(aﬂ)_ (5.

[y §
ot
—

(1) If the eigenvalues of T decay like O(g?) as j — oo unth some q < 1 then

E(&) <e(l 4+ ]0g+(w/5)).
Here, as usual, log™ t = logt fort > 1 and logt t = 0 elsewhere.

Proof. The proof is given for n = 1 (coinciding with the case n = 0} only. The
exlension to n > 1 can be done as in the proof of Theorem 5.1 and is left to the
reader.

Without loss of generality assume that the eigenvalues {A;} of T are mutually
different and in decreasing order. Choose m € N, 0 < m < k := k(4) — 1, and define

dn) = I10 - 3.

M

Let @i_, be the translated Jacobi polynomial (5.2) of degree k — m with parameter
v =2u+2, and set
P(A) = Pm(N)piem (A dntr) -
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Clearly, p € I} with p(X;) = 0 for j = 1,...,m. Furthermore, since 0 < ¢,(}) < 1
for 0 < A < Ay, (5.3) implies that [p(A)] < 1 in this interval, and

M) < M o (A Ama)] S ek —m+ 172000 0 A < Ay
If A =0(7) as j — oo, let m = %5k which gives
VO] < ek + 1)~ @Dy e o (T).
It follows that
AT < Py = ¢ + Mp(TYT* wl] <8+ ek + 1)y (56)
and hence, Proposition 2.1 implies
8 <m0 < [ ple” < 8 ck(8)"CH D,

This implies assertion (:).
If A; = O(¢’) as j — oo, let m = k in which case

I’\“Hp(’\)l < C(}‘H-la Aeo(T),
with § = ¢**! < 1, and
(Tl <8+ et

It follows as above that
k() > T—1
- ¢C

&
T
W

which implies {(22). o

Note that Theorem 5.2 always improves upon the former bound of Theorem 5.1.
The improvement can be quite dramatically. For example, if 7" is a Fredholm integral
equation of the first kind over a bounded domain {2 with continuous kernel A(-, ),
then Mercer’s theorem (cf. {71, Sect. 98}) implies

jgl)\jzjﬂh(t,t)dmoo,

showing that A; = O(1/5),  — oo. In case of additional smoothness of A, for in-
stance Lipschitz continuity, faster decay of the eigenvalues can be shown (cf. [70]),
and conjugate gradient type methods will require (significantly) less iterations to
rcach order-optimal accuracy than in the general case.

Hemark. The conjugate gradient type methods of Section 2.3, e.g., CGNE and CGME,
can be analyzed in the same way. If Assumption 3.6 is fulfilled for some g > 0, the
bound of Theorem 5.1 becomes
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k(8) < c(w/8)Hm+ (5.7)

Assume next that 7' is a compact operator with positive singular values {o;}. In this
case one has to replace T' by TT* in (5.6) and g + 1 by (¢ + 1)/2; recall that the
cigenvalues {);} of TT* are given by A; = o7. From this follows that assertion (i%) of
Theorem 5.2 remains unchanged if the singular values of T' decay geometrically. For
sublinear decay rates the corresponding bound for k() is

k() < c(w/g)/ it} qp oo = 037 {5.8)

Again, (5.8) is always better than (5.7). Note that Fredholm integral equations of
the first kind with £%-kernels are Hilbert-Schmidt operators, and for Hilbert-Schmidt
operators one always has a > 1/2. If the kernel of the integral equation is smooth,
e.g., differentiable, then the singular values decay faster (cf. [3, Theorem 4.21]) and
the second bound becomes even better.

When T is selfadjoint and semidefinite one can use either of the two families of
conjugate gradient lype methods; those of Section 2.1 and those of Section 2.3. Note
that the algorithms of the second group requirc approximately twice as much work
per iteration since each iteration involves one multiplication with T and one with 7™
Furthermore, by comparing (5.7) with (5.1) one may expect that the methods from
Section 2.3 will require more iterations; in fact, for the example of Section 4.2 the
stopping index k(d) will approximately be squared when passing from a conjugate
gradient type method for Tz = y° to a method using 77" instead. For compact
operator equations this gap becomes less dramatic when the cigenvalues decay fast to
zero, as can be seen from Theorem 5.2 and the remark following it. Nevertheless, cG
and MR are much morc cficicnt than CGNE and CGME, respectively. In other words,
when T is selfadjoinl and semideflinite then one should avoid passing to the normal
equation.

5.2 The counterexample revisited

By Proposition 2.1 the stopping index k(6) as determined by the discrepancy principle
is always minimal when n = 1, i.e., for MR. On the other hand, recall from the
remark following Stopping Rule 4.7 that the discrepancy principle for MR and Stopping
Rule 4.7 for G determine the same stopping index k(4) — at least in exact arithmetic.
The intuitive feeling, on the other hand, is that ¢G achieves optimal accuracy faster
than MR; thus one might try to stop ¢G earlier. This can be achieved by playing with 7
in the definition of the stopping rules, i.e., by choosing 7 somewhat larger for ¢G than
for MR. Unfortunately, however, this intunitive feeling lacks a theoretical justification.
In fact, two natural questions remain unanswered:



e Does G always achieve optimal accuracy with less iterations than Mr ?
o Under what conditions is CG’s optimal accuracy better than the one of MR ?

Below, these questions will be investigated for the academic example constructed in
Section 4.2, Thereby k{§) always denotes the (identical) stopping index as determined
by the two stopping rules; furthermore denote by £S9(8) and by kMR(4), respectively,
the iteration indices for which ¢G and MR attain the best approximation of the exact
solution.

Consider the problem Tz = y of (4.7). Recall that the cxact right-hand side y
defines the inner product (4.8), and since y € R(T) it is possible to define the inner
products [, ], for all n > —2. Some basic asymptotics of the corresponding Jacobi
palynomials have already been derived in Lemma 4.6; to compare ¢G and MR the
dominating constants in these asymptotics are also required.

Lemma 5.3 Let [-,-]o be as in (4.8). Then the following esymptotics hold for fized
n>—2and k= oo :

(7:) [p[n+l],pk +1]] I? 2v4n+3) k —dp—2n— 4

2vtn+2
. fnt2] _[n+2] {2u4n43) 2 (204n43) 7 —ap—2n—4
(42) Pk I =2 (2u+n+2) (2v+n+4) L ’
[n+3] [n43l; - (2v4n+43 2 (2r+n+4) —dy—2n—
(I“) Epk ) P ]” =6 (2u+n+2](;u-:n+3)(2uLniS)[2u+n+6) gt

Proof. (i) Refining (4.13), cf. [76], and inserting this into (4.12) gives
Ecn]’k . = 2V+n+2)k—4u 211.3

From (2.21) therefore follows

[PELH]’ [-n+].]] uj:2n+ F2(2V+n+2)k~4u~2n 4

and a final application of the functional equation I'(¢ + 1) = (I'({) establishes (2).
(i1) As in {4.28) one concludes from the orthogonality relations that

n+2 n+2 n+2 n+2 n
R e B

= (PE?H] Pk+1 (0 [P[n+2] 1]n+1

n+2 1 n2 n+2
(2 = plL )0 [, ol

As follows from [76, (4.21.7)],

k(k + 20+ n 4 3/2)

]s
0 = —
Pe(0) % +n+2

, (5.9)

78



hence, ot
+ b f
(I = w10y = rnm e ko
Together with (7), (i¢) follows.

(117} The same technique applied to [p [nH],Pk +3]]

yields
P+ o,

[P, Pk = gl

= OV [P ey + 5 (p“+3]-p;;l)"(o)[‘“+3 )

-l vy [, 1 p,[k"-:-ll]]n'!'l

+§@Fﬂ—ﬁmemwim”m
= (=0 = ey o) + @meﬁdwmhmmfmw-

From (5.9) follows

[n+3] [} [n+1] - 1
— (px Pk+1) (0) Pkn+1 "(0) = (2u+n+2){2u+3ﬂ.+3)(21/+n+5) K

The second derivative of pﬁc"] can be computed by similar means as in (5.9), which
gives

Elk—1k+204+n+3/2)(k+2v+n+5/2)

P(0) = 2v+n+2)(2v+n+3) ;
hence,
% (Pl = )" (0) = G S pe e &
Consequently,
[pgcn-i-S]’an-!-S]] (2u+ﬂ+2}{2v+n+3) Zotnt5)(2v+nto) & [P[n+3]’pk +3]]n+ )
and the assertion follows from (2). a

Consider the bechavior of ¢G and MR for the above example given the perturbed
right-hand side y* from (4.9). As in Section 4.3, denote by {x¢} the iterates of CG and
by {z{} the iterates of MR. Recall that the residual polynomials for the two methods
are defined via the inner product (4.10), not. via (4.8); the residual polynomials {p}}
of ¢G have been computed in Proposition 4.5, namely

2
ph =P — 9 apl =&, )

Since the error can be rewritten as
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2 — 2§ = pl(T)e) + p(0)(y° — v),

this gives
12 = 251® = [pl,pkl 2 + (p1(0)6)’
2272 = 20l ) + 0EpEL L PR Do + (p10) - 40782
note that {pLD] p[fj Jor =[P P21, by orthogonality. Thus, substituting
t= Fgey K, (5.10)

one eventually obtains by using Lemma 5.3 and (5.9):

Lot =zl ? = et L Gt 4 Gt + &0 koo,

where
5 _ (F2(2v+3})1/z/+1 1 f (42 48p+1 § _ 2u(2v+1)(2v+5 5 _v{2vtl)
0=\ T (2o+1)(2052)2 1= 2043 7 52T T(zegd)(2e4) 0 83T (2u+d :

To determine the asymptotic behavior of £°9(4) the above expression has to be min-
imized, which leads to the following equation for ¢:

+(2v+d)£2+ii‘gu_+t 43_0.

2u+1 20+l
Dividing out the trivial root at ¢ = —1, one readily obtains
08 = —(v+2)+ 22+ 22 50, (5.11)

and kP°(9) is obtained from #5° via (5.10).

Because of the particular form of the pertulbatlon y* —y, the residual polynomials
of MR are the same for y and for y°, namely {p;C }. 1t follows as above by using {5.9)
that

@ 7 = P+ (EM(008)7 2 Gt (L 4 s ko o,

IE:
with
o= (F7(2u+3))1/1»'+1 3 (L= v(2v+1){2v+4)
0 AT p{2u+1)(2043) (20+4) L= "30Ge+3)

Thus, via (5.10), the optimal iteration index £ME(§) for MR can be obtained from

MH;S 2U+3

O S T T §—0. (5.12)

Comparing (5.12) and (5.11) it is easily scen that, as ¢ — 0,
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Fig.5.1. Asymptotic ratio of oplimal MR error over optimal CG error in dependence of v
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In other words, at least asymptotically as § — 0, the optimal iteration index of CG is

(v+2+ (u+2) L3y

smaller than the optimal itcration index of MR.

Cousider Figure 5.1 for a comparison of the optimal accuracy of the two methods
for 0 < v < 100: the figure shows the limit as § — 0 of the ratio of the optimal errors,
iLe.,

5 v &
im o — zhen g1/ e — 2ge )l

The ratio is surprisingly close to one, i.c., the optimal errors of the two methods
become almost identical as § — 0 for this particular example. It can be shown that
the limit of the plotted ratio is one, both as v — oo and as » — 0. Consequently, CG
is more efficient, at least for this (academic) example: essentially the same accuracy
is oblained with clearly fewer iterations.

Finally, consider the stopping index k(4) as determined by Stopping Rules 3.10
and 4.7. Since

ly® — T2l)|? = [, o' = 62+ [pl), pi Vo = 62 4 DLt gt (5.13)

as k — o0, it follows that
k((g) - ((72 ) 1Fzzgfi;3!)1/4u+45—1/2u+2 §—0.
Thus, relating 7 with ¢ of (5.10) gives
Ti(l+%)1/2, 0. (5.14)
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In other words, there exist 7°C and 7M® such that the respective stopping indices

k(4) coincide with k2°(8) and kMB(8). Unfortunately, however, these numbers for 7
are problem dependent, since they depend on the (typically unknown) parameter v.
Since E°9(4) < kMR(4) asymptotically it is clear that 7°% = tMB; in this example the
ratio 7% /TMB ranges between 1.4 and 1.7 for relevant values of . These numbers
agree with the ones that are obtained experimentally in the following section.

For comparison: the heuristic stopping rules determine the stopping index k(y?) as
the minirmuam of the sequence

nt =IO e, k=L
for MR {cf. Stopping Rule 3.13) and
nt = O LA, k21,

for cG (cf. Stopping Rule 4.10), respectively. Asymptotically, these sequences only
differ by the factor (2v +2)2/(2v + 3)?, cf. (5.9), hence it suffices to consider only one
of them. As can be seen from (5.9) and (5.13), the minimum is attained at

k‘(yé) = (I/ [‘22%:.;.3))l,f4v+45—1/2u+2’ 5§50,

In view of (5.10) this corresponds to
l=v, §-0. (5.15)

In conclusion, the corresponding errors decrease with order-optimal eccuracy even
though the noise level § is unknown. This is in agreement with Corollary 3.15, since
(3.29) holds with v = 1. For the considered stopping rules the corresponding values
of ¢, cf. {5.14) and (5.15) do not behave like the optimal values t€¢ and tM® as v
approaches 0 or oco: all stopping rules terminate the iteration somewhat too late when
v gets large, while the heuristic rules terminate the iteration somewhat too early when
v is very small.

5.3 An application: image reconstruction

Let z : R* = R} be a two dimensional function, representing e.g. a grey-scale image.
In optics one is often interested in recovering = from a blurred and noisy copy y. In
many applications, biur can be modelled by a space-invariani point spread [unction
h:R*— R, in which case z and y satisfy the first kind convolution equation

y(s, 1} = (Tz)(s,t) = /R"" h(s—s',t —tYz(s,t') dd'dt’. (5.16)
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If o € LY{R?) then the spectrum of the integral operator T is a continuum given in
terms of the Fourier transform of A. By the Riemann-Lebesgue lemma the spectrum
of T clusters at A = 0 showing that the deconvolution y — 2z is ill-posed. For a
practical implementation the unbounded region of integration has to be truncated to
a finite domain, e.g., a square, in which case the integral operator becomes compact.
Consequently the spectrum is no longer a continuum, but it is asymptotically densc
in the spectrum of 1.

For the reconstruction of astronomical images the point spread function h is some-
times taken to be the Gaussian

h(s,t) = exp(—x(s* + %)), (5.17)

in which case (5.16) is a simple model for the effect of atmosperic turbulences caused
by random variations in the refractive index. This is the example which will be dis-
cussed below. The implementation of the integral equation (5.16) follows the standard
approach in the literature: the image is represented by an equidistant mesh of m x m
pixels with mesh-width d, and the integrals per pixel are approximated by the rect-
angular quadrature rule; here, m = 64 and d = 1. Note that 4 is just an intensive
parameter as opposed to the “real” extensive mesh-width which is intrinsic in y = 0.1
and in the particular model (5.17). For practical reasons, blur is restricted to compact
support, i.e., A is truncated for max{|s|, {{|} = 3.

Consider Figure 5.2 for an illustration of the blur. It shows the true image and
a blurred and noise corrupted copy; note that the noise (1%, sce below) is almost
negligible as can be seen from the flat parts of the image. The sharp contours of
the exact solution make it difficult to obtain good reconstructions; fortunately, the
truncation of £ makes the problem better behaved ~ in view of Assumption 3.6 -
since the Fourier transforms of the image and the truncated point spread function,
respectively, have similar asymptotic behavior.

The finite dimensional linear system

has a lot of structure. The “image vectors” of dimension 64-64 = 4096 are obtained in a
straightforward way by simple row-wise ordering. Matrix A is therefore a block matrix
with 64 x 64 blocks of dimension 64, each. Every block 1s Toeplitz, i.e., constant along
the diagonals and only the central five diagonals are nonzero. The blocks themselves
remain the same along each block-diagonal, that is, A is block-Toeplitz with Toeplitz
blocks. Moreover, A is a sparse matrix with at most 5-5 = 25 nonzeros per row. Thus,
iterative methods are highly sophisticated for solving (5.18).

To simulate noise, the exact right-hand side b is perturbed by normally distributed
random vectors e, For each of two noise levels, namely

lell /lIb|l =0.01,  resp.  feli/|Ibl =0.001,
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Fig. 5.2. Exact solution x (top) and perturbed right-hand side b + e {bottom)
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Fig. 5.3. Relative errors of the different methods for 1% noise (left) and 0.1% noise (right)

twenty perturbations are considered. Although being symmetric, A 1s not semidefinite,
so that conjugate gradient type methods cannot be applied straight to (5.18) as in
Section 2.1. Instead, approximations of x are computed by CGNE and CGME, using
both suggested stopping rules: the order-optimal rule and the heuristic rule. Later in
Section 6.6 these methods will be compared to a conjugate gradient type method that
applies straight to selfadjoint indefinite ill-posed problems.

For a comparison of the accuracy of the iterative schemes, cf. Figure 5.3 and Ta-
ble 5.1. They show the error of the optimal iterate (opt./solid line), the error of the
iterate determined by the order-optimal stopping rule using the prior information
§ = |je] and parameter 7 = 1.1 {ord./dashed line), and the error of the iterate de-
termined by the heuristic stopping rule (heu./dotted line). In each of the two plots in
Figure 5.3 (note the different scales for the two plots), the left-hand twenty columuns
show the errors of CGNE for the twenty noise samples, the right-hand twenty columns
correspond to CGME (the same noise samples were used for the two iterative methods).
The average values constitute the entries of Table 5.1.

As can be seen from these numbers, the accuracy of CGME is in general worse by
about 10% as compared to CGNE. This comes somewhat unexpected in view of the
results of the foregoing section; one might guess that this phenomenon is due to a
higher round-off sensitivity of CGME, however, other equivalent implementations (like
the bidiagonalization method of PAIGE [62]) have led to the same results; compare
also Section 2.6. The order opilimal rules provide satisfactory approximations, and so
do the heuristic rules in the presence of less noise. In fact, for 0.1% noise the heurisiic
rules perform even better than the order-optimal ones; this is due to the fact that the
nullspace of A is trivial, which enables a decrease of the residual norm to about 0.5|e||
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1% noise 0.1% noise

opt. ord. heu. opt. ord. heu.

CGNE 0.1452 0.1606 0.2514 0.0753 0.0915 0.0811

CGME 0.1695 0.1702 0.2494 0.0841 0.0875 0.0843

Table 5.1. Average (relative) error norm

1% noise 0.1% noise

opt. ord. heu. opt. ord. heu.

CGNE 26.3 13.0 2.0 166.1 68.6 96.8

CGME 120 130 2.0 926 686 866

Table 5.2. Average iteration count

until the optimal approximation of x is obtained; in other words, the order-optimal
rules with parameter T > 1 terminate the iteration too early.

The average stopping indices are shown in Table 5.2. It can be seen that the optimal
stopping index of CGME is much smaller than the one of CGNE; only about half as
many iterations are required for CGME (but note that the accuracy is somewhat worse).
Recall that a similar observation could be established theoretically for the example
considered in Section 5.2.

The numbers in Table 5.2 also explain the loss of accuracy of the heuristic stopping
rule in case of 1% noise: the stopping index & = 2 is much too small. As mentioned
before, the performance is much better for 0.1% noise; for particular noise samples
the heuristic stopping index for CGME and the optimal one even coincide. The above
observation is in agrecment with the theoretical results obtained for the example
in Seclion 5.2. There il has been shown that the heuristic stopping rules stop the
ileration somewhat too early if Assumption 3.6 is fulfilled for smailer u only. This
is precisely the case in the present application., As & becomes small, however, the
good performance of the heuristic rule can be verificd by means of the theorefical a
posteriori bounds obtained in Theorems 3.14 and 4.11: in the case of 0.1% noise the
estimates 4. for the actual noise level have always been in the interval

8./b|| € [0.0007,0.00085).

Thus, the ratio ||y — y®|| /6. which enters the aforementioned bounds has always been
below 1.5.

Figure 5.4 illustrates the semiconvergence of the iteration by showing the iteration
histories of the (relative)} errors of CGNE and CGME for two right-hand sides with 1%
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Fig. 5.4. Iteration error history for two noise levels

and 0.1% noise. Note that the two curves corresponding to the same method overlap
until the first of them starts to diverge. This illustrates that the converging behavior
in the heginning of the iteration is essentially independent of noise; less noise leads to
delayed divergence, and hence to better accuracy.

Figure 5.3 shows the error estimate for CGNE provided by the heuristic Stopping
Rule 3.13. The corresponding plot for CGME is shown in Figure 5.6. [n this particular
case the stopping index for CGME coincides with the optimal iteration error, whereas
the stopping index for CGNE is too small. It can nicely be seen that the dashed lines
clearly underestimate the converging component of the error in the beginning of the
iteration; the diverging components are matched reasonably well. This again explains
the rapid termination according to the heuristic rules for larger perturbations of the
right-hand side, cf. Table 5.2. Note, however, that it is obviously better to slop the
iteration too early than to stop too late, because in the latter case 4. may become
very small and the error bounds of Theorems 3.14 and 4.11 may blow up.

Finally, see Figure 5.7 for a plot of the corresponding reconstructions obtained
from CGME and CGNE with the heuristic stopping rules. The quality of the results is
comparable. The important contours of the truc image, <f. Figure 5.2, are recovered.
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Notes and remarks

Section 5.1. Theorem 5.1 is due to NEMIROVSKII [38], see also BRAKHAGE [6]. The
estimate (5.5) in Theorem 5.2 is taken from NEMIROVSKIT and POLYAK [59]; compare
Lours [33] for a suboptimal bound. Examples can be constructed to show that the
exponent in (5.5) cannot be improved in general, cf. [36].

Section 5.3. The example of this section is borrowed from [39]; for more numerical
examples with this test problem, see [38, Section 8.2]. An elementary treatment of
image reconstruction and image restoration can be found in the book by LAGENDIK
and BIEMOND [49]; the reference to the particular point spread function (5.17) is on
p- 30.
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6. A Minimal Residual Method for
Indefinite Problems

This final chapter considers the applicability of Krylov subspace methods to selfad-
joint, indefinite problems. T'here are a number of important applications where it pays
to avoid forming the positive (semi)definite normal equation; two such applications
are described in Sections 6.6 and 6.7. A family of conjugate gradient type methods,
suitable for ill-posed indefinite problems, is introduced in Section 6.1. These methods
have very similar optimality properties as the methods of the foregoing chapters. In
particular, one of these schemes is a minimal residual type method, and this one will
be analyzed exemplarily for its convergence and regularizing properties. The main
result (in Section 6.4) states that the.discrepancy principle provides an order-optimal
stopping rule,

6.1 MR-1I, a variant of MR

The conjugate gradient type methods of the previous chapters are defined by residual
polynomials pr € /g, which form a system of orthogonal polynomials with respect to
the inner product

[, 9]0 = (LT Wy — T20), T"9(T )y — Tzo)) -

If T'is a selfadjoint but indefinite operator, the above expression can be rewritien as
[ 8h = [ e(N)e(3) X\ dl Bay - T

showing that the polynomials {p.} are orthogonal with respect to some measure
supported on the positive and on the negative semiaxis. Note, however, that the
inner product [+, <], is only definite when n € Np is even. Even then it may happen
(and if djjEx{y — Tzo)|® is symmetric with respect to the origin it will happen for
every odd &) that a zero of the orthogonal polynomial comes to lie in the origin. Of
course, this implies that no multiple of the corresponding polynomial belongs to 71,
and hence, the original definition of conjugate gradient type methods may fail for
indefinite problems.

Alternatively, conjugate gradient type methods for indefinite problems can be de-
fined by the optimality property of Proposition 2.1. According to this condition, z
is taken to satisly
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IT™*(y = Tex)ll < T2y — T)| (6.1)

for all z € zg + Ki—1(y — T'zo; T'). Again, for indefinite T', (6.1) is not useful for all
n € Ny, only for n even. In this case the solutions of (6.1) for k = 1,2,..., can be
computed by short recurrences (compare the remark before Lemma 6.4), but their
regularizing propertics are not understood.

For the purpose of regularization it seems to be more appropriate to search for the
minimizer of (6.1) within the Krylov subspace

2o+ Kia(T{y — Tzohi T) (6.2)

originating from 7'(y — 7'xo). The corresponding iterate ) can still be written as in
(2.1), namely
zx = 2o + g1 {1')(y — T'zo) , (6.3)

but the iteration polynomial gx_; now has a root at the origin. Therefore, the corre-
sponding residual polynomial p; satisfies a Hermite interpolation condition, i.e.,

pe € I = {p € M |p(0) = 1, §'(0) = 0} (6.4)

Note that z; minimizes (6.1) in the Krylov space (6.2), if and only if its residual
polvnomial p; satisfies

[pe. paln € [pyple forall pe IP°. (6.5)

The following result characterizes the minimizer of (6.5) in terms of orthogonality
relations; an efficient numerical scheme for the computation of {z,} on the basis of
these orthogonality relations is derived afterwards. Recall that « always denotes the
number of nonzero points of increase of [|Ex(y — Tzo)||%, including the case when
K = 0.

Proposition 6.1 Lei n € Ny be cven, 0 < k < & + 1. There is a unique p; € H°
minimizing (6.5), and this polynomial is characterized by the following relation:

[Pe, Plnsz =0 forall pe Il;_,. (6.6)

Proof. Any p € II® can be rewritten as p = 1 — A%s with some polynomial s € [7;_;,
and vice versa. Since Ifi_» is a Hilbert space with inner product [-,:], as long as
k — 2 < &, the minimization problem

Ipypln = [1 — s 1— /\2.&:],1 — min

has a unique solution s;_y € [Ty_5 corresponding to a unique solution pg € 1Y% of

(6.5).
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Let py € T2, and let p be any polynomial in /T, 5. Tt follows that pr —yA?p € IIJ°
for every v € R, and

(o — ¥A%p, ok — ¥A%Pla — (Pr: Prle = ¥2(Py Ploca — 2(Pks Plnt2 -

If |pk, plasz # O then the right-hand side can be made negative by choosing v appro-
priately. It therefore follows that py is the minimizer of (6.5) in /7%, if and only if
(6.6) holds. a

If & < oo then the polynomial p.4y is the unique polynomial in /3%, with & roots
in the nonzero points of increase of d||Ex(y — T'zg)||?, and hence

7 " 0, n>0,
[Pat1s Pesiln = |(1 = P)T™y* = { = Pwl*>, n=0. (6.1)

As mentioned above, orthogonal polynomials corresponding to [-, -], may have a
root at A = 0, in which case the corresponding polynomial pL"] is nol well-defined.
Always well-defined are the orthonormal polynomials {uE;"j} with positive leading co-
eflicient,

uLn] eIl and [uEll,ug-n]}n =d;. (6.8)
The following corollary of ’ropesition 6.1 is the basis for an efficient numerical scheme

for computing the sequence {z;}. Note the similarity Lo Proposition 2.3.

Corollary 6.2 Let n € Ny be even. For 1 < k < &, the minimizers py and pipr of
(6.5) in JIY° and IIYY |, respectively, are related by

e — Pk 5 n
£ /\f = = Qkugcjld‘]: Ok = {Pk, u£j14}]n+2 . (69)

Proof. Let p:= (pr — pis1)/ A%, Because of the Hermite interpolation conditions (6.4)
p belongs to fix_;. By Proposition 6.1,

[p" q]n+4 = [pka q]ﬂ-+'2 - [Pk+1 3 q]n+2 =0

for all g € II;_s. Hence, p is a mulliple of uf_ﬁ'ﬂ, and pryy = px — gz\zug"_t‘l] for sorne
¢ € R. The value of ¢ can be determined from the optimality property (6.5) of pi41.
Writing

[k — X2l pi — Xl = [, pile — 200p, N + 2

it is easily scen that the right-hand side becomes minimal for ¢ = g;. Thus, (6.9)
follows from (6.5). D
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Note that gx also depends on n; since n will be set to zero in the following sections
this parameter will be omitted, though.

Corollary 6.3 Forn € Ng even, and 0 < k < &, the iterates xp and $k+1 of (6.3)
coincide, if and only if pi = p' Y ie., if and only if p[ "2 erists and Dp +2]’(0) =0.

Proof. By virtue of (6.9} pg = piy; holds, if and only if gz = 0, namely if and only if

e, wi"er2 = 0.
Since uLnT] is a polynomial of exact degree £ — 1, the above, together with Propo-

et exi<:ts

and coincides with pe. This implies that p[n+2] (0) = 0. Vice versa, if p +2]’(D)
[n+2]

sition 6.1, implies that {pe, plase = 0 for all p € ). In other words, p

then one has p;’" ' € " Since p[ 2 satisfies (6.6), 1t equals py by virtue of Propo—
sition 6.1. O

The polynomials {u['“’ ]} can be determined from their three-term recurrence for-
mula, which has the form

Bo=[L1GE,  Wwfi=0, W =178,

&,E,T'fﬂ =t - gl - g, (6.10)
[n+d] - [nta]y1/2 [n+4] _ ~[n+4] £20,
Bre1 = [Ukn+1 :ﬁ:+1 Jngas Uk?:-l = ~1:4-1 /Bt
where
ap = [u [n+4], uLn+4]]ﬂ+5, E>0.

This is casily checked using the orthonormality of {u ”+4]}

Once ch"_Tl is known, g, can be computed from (6.9). Note that {6.9) implies that

the iteration polynomials {gx} enjoy the update formula

G = qeor + ol k>,
which defines the iterates z; via {6.3). Here, z; = ag since I8 = I = {p=1}. If
K < oo then the algorithm terminates with 3. = 0, L.e., with last iterate z.4;.
The imnplementation of this scheme is exemplified in Algorithm 6.1 for the impor-
tant case n = 0. Introducing the intermediate quantities

v = Tu%ﬂl(T)(y —Txo), we=Tuw, k>0,

and providing extra storage for T'w;_, only one matrix vector multiply is required per
iteration. Note that the computation of {vz} via (6.10) is nothing but the standard
Lanczos process, cf. [26].
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ro =y —Txg

I = Zo

T = Tp
w_, = ()

Vg = TT‘(}
w_y =10
wg = Tvg
B = |lwoll
Vg = ’UD/,G
wo = wo/f3
k=1

while (not stop) do
0= (re,wp_1)
Tkyl = Tk + OVk-1
Tedy = T~ QWg—1
o = (wk_l,ka_1>
Uy = Wg—1 — OV, — ,g’Uk—z

wi = Twp_y — awg_y — Bwr_y
B = fhwgll
vg = v/
wi = wy/f
k=k+1
end while.

Algorithm 6.1: MR-1I
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Recall that for n = ( the iterate z; minimizes the residual norm in the Krylov
subspace (6.2). Hence, like the corresponding method of Section 2.2, this is a mini-
mal residual method. Note, however, that in general the iterates differ from those of
MR, since the residuals are minimized in different Krylov subspaces. The method of
Algorithm 6.1 is therefore called mi-11 further on.

Remark. At this point it is worth noting that the extension of the original MR method
of the foregoing chapters (where the residual polynomial p; minimizes [p, p|n, with
n € Ny even, over 1I?) to indefinite problems can be derived similarly. The analog of
(6.9) for the difference of pryq and pr is

Prpr = Pe + derulr

where g is easily determined with the same argument as in Corollary 6.2. The result
is equivalent to Proposition 2.3 (note the different meaning of n there) except for
the use of orthonormal polynomials to avoid breakdowns. This MR implementation
(called ORTHODIR in the literature) is fairly similar to Algorithm 6.1. In fact, the only
difference is the initialization of vy which should be vq = rq, ¢f. [7]. As said before,
the reason that this algorithm is not considered in more detail here is the lack of
theoretical results concerning its regularizing properties.

On the other hand, the regularizing properties of the conjugate gradient type meth-
ods acting in the meodified Krylov spaces (6.2) can be analyzed completely. Tor ease of
notational simplicity this will only be exemplified for the MR-11 methed, i.e., the case
n = 0. In particular, in Section 6.4 it will be shown that the discrepancy principle
provides order-optimal accuracy for the itcrates of MR-II.

This analysis requires the following lemma that may be seen as an analog of Corol-
lary 2.6.

Lemma 6.4 Let n € Ny be even, 0 < k < k. Then the following holds:

(0) — plly1 (0)] = 2 [uZ O ([pes r)e — [Prns Py a]n) 2

Proof. Starting from

[P, Pl — [P, Pee1]n = [PE — Prers Pe — Pea)n + 2Pk, e — Prna ]

it follows from Proposition 6.1 that the second term on the right-hand side vanishes
because py ~ Prr1 = AZsp_g with 54y = gkuk"_ﬁ‘i} € iy, cf. (6.9). It follows that

[P Pl — [Prtss Prsaln = Ishmry spo)nta = 2l ul i),y = o2

By letting A — 0 in (6.9) one observes that
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P(0) = pller (0) = 2050l (0) . (6.11)

Combining these two equations, the claim follows. 0

6.2 On the zeros of the residual polynomials

A major tool for the analysis of the conjugate gradient type methods of the previous
chapters have been the many well-known propertics of the zeros of the corresponding
residual polynomials. Since these residual polynomials form a system of real orthogo-
nal polynomials, all their zeros are real, and zeros of consecutive polynomials interlace.

In general, there is no such interlacing property for the zeros of the polynomials
{pi} characterized in Proposition 6.1. Partial interlacing results are available, though,
which are strong enough to extend the analysis of the foregoing sections to MR-IL
These results imply, in particular, that all zeros of p; are real with at least & — 1 of
them belonging to the convex hull of the support of the weight function.

The notion of interlacing points will be used in a less strict sense in the sequel,
including the casc where some points coincide. Two finite sets {£;} and {n;} are said to
interlace, if the numbers of elements differ by at most one, and if each closed interval
[£;, &ip1] between two neighboring points from {£;} contains at least one point from
{n,}, and vice versa. Conscquently, the corresponding open interval (¢;,£;41) cannot
contain more than one point from {7, }, but it may contain none. The closed interval
may contain up to three points from {5}, in which case two of these points coincide
with £; and 44, respectively.

Proposition 6.5 For k < & the zeros of p; are real and simple, and interlace with
the zeros of uf].

Proof. Expanding pi in terms of the orthonormal system {uf]} gives

k
pe = 3 [pe, ulllp ul?

i=o

By Proposition 6.1, the first £ — 2 expansion coefficients vanish, and hence, p; is a
linear combination of ugﬂl and UE], ie.,

pe = pruily + 0w

(There is no relation between p; and g; defined in Corollary 6.2). If px = 0 then
pE] exists and p, = p‘[:]. Hence, the roots of py and uE] are the same in this case.
Otherwise, p, and pkufil share signs at the roots of uf]. Because of the classical

interlacing property for the zeros of orthogonal polynomials, the sign pattern of ’LLEZ]_I
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(and thus the sign pattern of pi) at these points is alternating. Consequently, px must
f2]

have a zero between two consecutive roots of u; ", and another zero either to the left
or to the right of all the roots of uf]. o

For an analysis of the regularizing properties of MR-IT it will be necessary to relate
the roots of p; with those of usﬂl. The link between these two sets are the zeros of

0
Proposition 6.6 For k < « the roots of qu‘ll inferlace with the roots ofufl.

Proof. For & = k the assertion is the classical interlacing theorem for the zeros of
orthogonal polynomials, since ul¥ = ul!), For k < & the polynomial )\Quiﬂl can be

expanded with respect to the orthonormal basis {uE]}, ie.,
W _ ey )
’\Quk—l = Z[U’kml‘uj b4 u;
=0

and the first &k — 2 expansion coeflicients vanish because of orthogonality. From the
three-term recurrence relation one has, compare (6.10),

Bk+1“ﬂl = )‘“L?] - &kuiz] - Bku.[fczll’

for some &g, B, Bep1 € R with Bup # 0, and hence, UEL can be eliminated from
ihe above expansion. Thus, there are numbers pi, o¢ and 7 (in general different from
those in the proof above) with

,\ZUEI = pkugﬂl + (on + Tk/\)uE] . (6.12)

Two different cases must be considered. First, if uE](O) # 0 then )\gufl_l and pkugﬂl

share signs at zeros of uE]. Since A? is always positive at these points, and since the
zeros of ugﬂl and u,[,f] interlace, this implies that the zeros of ufll also interlace those

of uf}. Second, if uf]((]) = 0 then both p; and o, must be zero, since the left-hand
side of (6.12) has (at least) a double zero at A = (. Consequently, in this case the

4
zeros of ui ]

, are precisely the zeros of uf] different from A = 0. a

The following lemma, which will play a central role in Section 6.4, provides an
application of these interlacing properties. To state it properly, a few more notations
are required.

As in the previous chapters the roots of pi are denoted by {A;:}, and they are
assumed to be in increasing order. Since py € IZ? the reciprocals of these roots add
up to zcro, te.,
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-1 N A e SN LS
Fig.6.1. Roots of the three polynomials py, u‘[,czI, and ugﬂl
|
0=p(0)=- >+, k22 (6.13)
i=1 )‘Jk

Therefore there is at least one positive and one negative root of p; for & > 2. The
smallest positive (largest negative) root of pr will be denoted by Ay i (A_ ).

Throughont, let {g;—, }i={ be the roots of ul'l | with the same increasing ordering,
For & < & there is an exceplional set £y of up to two of these roots, which plays a
special role because these zeros may come arbitrarily close to the origin in the course
of the iteration.

Ex—: is specified as follows. When py and uE] coincide, there is preciscly one zero
ik—1 that lies strictly between A ; and A4 by Proposition 6.6. This one element
forms the exceptional set &._; in this first case. In thc other case the roots of p;
and uE] have no points in common. By Proposition 6.5, the two roots A_; and Ay
interlace with three consecutive zeros of uf], which in turn interlace with precisely
two of the roots {y; . 1}, as follows readily from a closer look at the proof of Propo-
sition 6.6, These two roots form the set £, in this second case. Note that this gives
no information about whether both elements, just one element, or no element of £;_;
belong to [A- &, A+ &), On the other hand, every zero ;.1 € [A_ 4 Ay i) necessarily
belongs to Ex—y. With this exceptional set £,_y, a prime in

3 (6.14)

i

means that the index range for § excludes indices for which p;—1 € &y

Compare Figurc 6.1 for an illustration of the general situation with & = 7. In this
figure a root of py, ufl and ugﬂl is marked by a cross, a small vertical bar, and a bullet
or a circle, respectively. A_ and Ay ; are labelled. Noie that one of the roots of py
is outside the interval [—1,1]. The exceptional set £ has two zeros, shown by circles
rather than bullets; note that just one of these circles fies between A_ i and Ay . In
this plot the zeros of py and those of ufll do not interlace, but the general rulc says
that between any two consecutive zeros of the one polynomial there arc at most two
seros of the other polynomaial.
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Lemma 6.7 With the above nolations the follounng holds:

=

1

now k|} 2<k<k. (6.15)

‘ < 2max{
Hjk—1

Proof. The proof is understood most casily by considering the pointers in Figure 6.1.
The technical dctails will be omitted. Comparing the zeros p;x—1 ¢ Ex—y of uE:] (the
bullets) with those of px (Lthe crosses) as indicated by the pointers underneath the axis
one obtains

, 1 1
2 A_’
0 Mik-1 Xy a<l R
e " (6.16)
{
1y >0 Hik=1 A, x>0 Ak

Comparing zeros as indicated by the pointers above the axis one obtains similarly

TR At 2
Tlotik-1 T Lok Aok N
s L S 9 (6.17)

,u.j_k>01uj-k*1 - Aj k>0 gk /\+,k

The extra terms —2A7} in (6.17) are correction terms to cope with the fact that no
pointers exist to one of the four roots of py that are closest to the origin. Adding up
the inequalities in {6.16) and (6.17) one obtains the inequality chain

Ly eyt 2
Ak DAk TS Bk o Adk Aok
Thus the asserlion follows from (6.13). i

6.3 Convergence and divergence

In this section the convergence properties of MR-t will be investigated. The analysis
will be restricted to the case zq = 0. Tt is shown that the iterates z; converge to Tty
whenever y € D(T1). This slight difference (D(77) instead of R(7")) from the results
of Theorems 3.4 and 3.5 is due to the additional property pi(0) = 0.

The basic ideas for proving convergence ol MR-I1 are similar to those used in Sec-
tion 3.2 to establish bounds for the norms of the residuals. However, the technical
details are now significantly harder. Obviously |p}(0)| can no longer take its pro-
nounced role as convergence modulus from the former chapters, since it is now zero
by construction. Tts role will be taken aver by the numbers |p(0)|'/?; note that
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151
lpE(0)] = 5 > VIE (6.18)
i=1 1.k

Recall from the theory of orthogonal polynomials that all zeros of uiz] are contained
in [—= [T, iT([] € [—1,1]. By Proposition 6.5 this implies that at least k — 1 zeros of
pr belong to [—1, 1] showing that

lpE(0)| 2 (k- 1), (6.19)

cf. (6.18). Tt follows that |pf(0)] — oo as k — oo, although the sequence {|p{(0)]}
need not be increasing, cf. Example 6.14.

B2 |

Lemma 6.8 Let p € I}, k > 2, have k real (not necessarily simple) zeros {A;}5,
Denote by A_ and Ay the negative and positive roots, respectively, which are closest
to the origin. Then, for every v > 0 there is some constant ¢ > 0 such that

APPO) S (@)1, AL <A< Ay
The constant ¢ is independent of the polynomial and its degree.

Proof. Since all roots of p are real, p’ has precisely one zero in (A_, A, ), namely the
one in the origin. Consequently, in this interval p only attains values between zero
and one. In the same interval the maximum of |A|*p is attained at a zero A = ), of
(A*p)". Some straightforward computations show that A, solves the equation

v piA)

T 0] (6.20)

Substituting p(X) = ]_[;-;1(1 — A/A;), the right-hand side of (6.20) can be rewritten as

R RS tav i (e b

=1

1 1
i=1 /\J )‘J
because, as in (6.13), the reciprocals of A; sum up to zero. Inserting this into (6.20)

yields the following equation for A.:

(6.21)
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Note that each term on the right-hand side of {6.21) is positive since A, € (A_, A;).
Next, let
1= | A 207 (0)2. (6.22)

The aim of the following estimations is to show that £ can be bounded from above by
some constant. It follows immediately from {6.18) (with pg replaced by p) that
£l
D =e (X 5) P <ely]l foreveryj=1,...,k,

2
i=1 AJ'JC

and hence,

I = ML 1A+ eld]) <1+ e3r8.

Inserting this into (6.21) one obtains

1 1 2, g2 1
— - 0)] = —— .
1+sZA§ T PO T

i=1

=

X ¥

Thus, & enjoys the quadratic inequality
g2 —2we — 2w <0,
proving that ¢ < v 4 (12 4 20)2. It thereflore follows from (6.22) that
Pl < (v (7 + 20 |27 ()17,
and hence,
IPp(Y) < IAPp(A) £ clp"(0)7, A S A <Ay,
because p 1s bounded by 1 in the given interval. O

This result enables the following proof of convergence of MR-1I for the case of
precise data.

Theorem 6.9 f the right-hand side y belongs to D(T?) then the iterates z) of MR-II
converge to Ty as k — .

Proof. If & < oo then the iteration terminates after x + 1 steps and in this case
y—Trepy = pept(T)y = (I — P)y according to (6.7). Since pi,(0) = ¢.(0) = 0 it
follows that z.: LA(T), and hence, z,.4q = T'y.

Assume next that the itcration does not terminate, and assume further without loss
of generality that & > 2. With A_ x and Ay 4 defined as before, py/[{A-~A_ 0 ){( Ay e~ A))

is a polynomial in [T 2, and hence, by Proposition 6.1,
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— P Y pY.
0= e o = LAY oo

| Exyll*-

Defining the function
32
(A = M)A —2)

and splitting the domain of integration into Z = (A. 4, Ay k] and Z, = R — Z, the
above can be rewritten as

L 2 B = - [ A |l (6.23)

Tr")k(/\) =

Consider next the function ;. Obviously, ¥(A) is negative for A € I, and positive
for A € Too. I A + Ap s = 0, e, if ¢y is even then (X)) > 1 for all A € T, If
Ak + Apk # 0 then the situation is more complicated: although %, (A) tends to one
as [A| = oo, this is no bound for ¥, in Z,. Instead, elementary calculus shows that
i has precisely one local extremum in Z,, namely a local minimum at

Apsdo g 1 1

/\,‘k + )\+,k ()L,k A-{-,k)

(6.24)

By formally setting Ao 1= oo and (o) := 1 in the case when A_x + AL, =0, one
therefore always has

Pe(A) 2 Ye(Aag) > 0, AET,.

Using this information about ¥y, the integrand on the left-hand side of (6.23) can
be estimated from below by pfti(Aox), which gives

sty dimalt < — 5 2o amyie.

Pl Aok)
Consequently,
lv = T2l® = fpepdo = [P BT+ [ 920 dlEwy?
Pi(A)
< HEITC d|| Exyll® .
= /ka( )( ?Pk(/\o,k)} ” )\y”
Since ;. (A) is negative for A € T and ¢{Ag k) > 0, the nonnegative function
Pr(A) yi/2
A=) (1= ERUNE e 6.25
PeN) =m0 (1= 005 (6:25)

is well-defined. Introducing the spectral orthoprojector
Er:=E\, - E,, (6.26)
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which corresponds Lo spectral elements A € I, the above inequality can be rewritten
as

Iy = Teal) < | Brgn(Thyl (6.27)

Up to this point the assumption y € D(T") has not been used. Now let 2 = Ty,

so that Tz = Py. The two quantities y — Tz = pe(T)y and Erer(T)y in (6.27) both

have the component (I — P)y in A(T), and can only differ by their component in

R(T) = N(T)*. By Pythagoras’ theorem inequality (6.27) is therefore equivalent to

1Tz = Tax|| < ||Ezes(T)T 2| (6.28)

The function ¢} of (6.23) needs a more detailed study. Obviously, ©2(0) = 1, and
the poles of ¢ are cancelled by zeros of p?. Conscquently, ¢? can be extended to a
polynomial in [T},. To see that ¢} actually belongs to 159, consider its derivative

2v¢ -9 ' 1 — I/"k 9 in'l)k
(i)' = 2prpi( ubk()\o,k)) Pk Gen)

Since pi.(0) = ¥;(0) = 0, this establishes (¢1Y(0) = 0, and hence, i € I3, As can
be seen from (6.25), A_ and Ay ; are simple zeros of w}; every further zcro of p; is a
double zero of 7, finally, the remaining two zeros of ¢} are the roots of the equation
U{A) = ¥i({Aok) counting multiplicity. As Agy is a local minimum of ), one has
1,{:;:(/\0 »y =0, and hence, Aoy is the missing double root of ¢?. Thesc are all 2k zeros
of wZ. In the special case A_ ) + App = 0, ©¥ degenerates to a polynomial of degree
2k — 2, and all zeros of % are zeros of py.

The above discussion shows that 2 satisfies the assumptions of Lemma 6.8. Con-
sequently, for any v > 0 there is some ¢ > 0 with

IAP2h(A) < el(eD)"(0)7 < el (O™, €T, (6.29)

where for the sccond inequality in (6.29) it has been used that |(%)7(0)| > [pE(0)].
This follows readily from (6.18) and the above identification of all zeros of ?:

[ 1 ] 1 1 &
2N — - [ _ I —
{e2)"(0)] = 2(2 Z)gk 2, 3, + 2 AM 7 Z=: f K(0)].

j=1

To complete the proof, assume without loss of generality that |A_ x| < A4z, and
choose € {depending on k) so as to fulfill € < |A_;|. Denote by P. := E. — E_, the
spectral orthoprojector corresponding to the interval {—e,¢]. Recall that py € I77°,
which implies that the assoclated iteration polynomial ¢x_, satisfies gz_1(0) = 0, and
hence, with = = 1Ty,

r—zp=z— @ (Ty=2— g1 (T)T2 — =1 (0)({ ~ Py = pu(T)z
Therefore, the iteration error can be estimated as
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lz =2l < NEG - 2l + 1 - Pl - 22
|2.pil(Tyell + (T = PTG = 20)]

A

Since all roots of py are real, and since py € IIYY, pi is bounded by one in (—¢,¢e] C T.
Together with (6.28) this yields

1 t

le = 24l < NPzl + 17z = 24)] < WPl = S BranD)Tal . (6.30)
Still, there is freedom in choosing ¢ in an optimal way, subject to ¢ < |A_,l. If

Ak and Mg, both tend to zero as k — o0, then let ¢ := [A_ | Inserting (6.29) with

v =1 into (6.30} then gives

)]s :
O o) < (14 VB el — 0, ko oo,

lz — =l < [iPe2li +
since |pf(0)] 7% < V2 A_ k| = v2¢ by virtuc of (6.18). If neither A_ nor Ay tend
to zero, onc may choose ¢ := |pf(0)|~*/*. Note that this implies that ¢ goes to zero as
k — oo by virtue of (6.19). With this choice of ¢ and with k sufficiently large, (6.30}
and (6.29) with v =1 give

e —ze|| £ || Pzl +c| P (0 )1 o |Ezz|| = || Pez] + ce|[Ezz| —— 0, k—roo.

The final case in which A_; — 0 as £ — oo, but A, ; won’t (recall that |A_x| < Ay x
by assumption) is somewhat more difficult to handle. In this case let £ := [A_;| and
observe that \/z will be smaller than A4 for & sufficiently large. The interval Z can
then be split into two intervals Z; = (—¢, /2 and Z; = (\/2, A4 ); denote by Ez, and
Eyr, the corresponding two spectral orthoprojectors. Splitting the right-hand side of
(6.30) accordingly, one obtains

| Enen(T)T 2| .

le—will < |2l + 2l EzpT)Ta] + 3!&:5’1299::(7*)7.&

1A

1
1Pzl + 2 Eneu( Tl + 7 3/2

Now (6.29} can be applied with v = 1 and v = 2, respectively. This gives

1

1/2
PO g 4 RN

(FAN

llz — x|

[ Fel] + ¢

|2zl + 2 ||Pvf;rcll +2c+/E 2]l

I~

and all three terms on the right-hand side go to zero as & — oc. Thus, convergence
x; — = = T1y has been established and the proof is complete. d
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It will be shown next that the MR-II iterates diverge to infinity in norm when the
assumption of Theorem 6.9 is not fulfilled.

Theorem 6.10 Let {z,} be the iterates of MR-11. If y ¢ D(TT) then ||zi]| — oo as
k — oo,

Proof. The proof is very similar to the proof of Theorem 3.5. H y ¢ D(T'!) then & = oo,
and hence the iteration does not terminate. For k > 1 define g (X) = (1—23)F € 1199,
and let @zx41 = par. The sequence {y } is uniformly bounded, and converges pointwise
to zero on [—1,1] \ {0}. Consequently, @r(T)y converges to ({ — P)y as k — oco. By
definition of the residual polynomials {p}, this implies that

timsup [[px(T)yll < im [lou(T)yll = (1 = Pyl -
k—oo —

Since
lpe(D)yll* = ly — Toell® = | = Phyll* + || Py — Tes| 2,

the above is equivalent to
|Py — Tzl — 0, k— oo. (6.31)

Assume now that some subsequence of {z,} remains bounded, so that it has a weakly
converging subsequence with weak limit 2, say. 1t follows that the images of this
subseguence converge weakly to Tz and, because of (6.31), this yields 72 = Py.
Consequently, y € D(T'!), and hence, |[z4| must go to infinity if y ¢ D(T?). ]

6.4 Stopping rules for MR-II

The minimization property of MR-11 suggests that the discrepancy principle (i.e., Stop-
ping Rule 3.10) is the correct stopping rule for this algorithm. This is indeed the case.
A number of technical difficulties arise, though, when generalizing the proofs from
Section 3.3. One of them is the estimation of the maximum modulus of the iteration
polynomial ¢-; In the vicinity of the origin. In the context of (semi)definite prob-
lems, cf. Section 3.3, the corresponding estimate followed comparatively easy from the
convexity of the residual polynomial and its derivative, cf. (3.14). Here the analysis is
mare difficult and will be the subject of the next lemma. Recall that A_ ; and Ay x are
the largest negative and the smallest positive root of pi, respectively. As in the previ-
ous section let T = (A_ 4, A; x] and E7 be the corresponding spectral orthoprojector,
cf. (6.26).

Lemma 8.11 For ¢ll & € N the following inequality holds:
g1 ()] S 2012, Ak S A< Ay (6.32)
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Proaf. For k =0 and &k = 1 the lemma is clearly true since the iteration polynomial
vanishes identically. Next fix £ > 2, and denote by A = A, € Z one of the points where
lge—1(A)| attains its maximum. Here, Z denotes the closure of Z. Clearly, A, # 0 since
gx—1(0) = 0. Furthermore, let

& = 125012 / lge-s(As)] - (6.33)

If ¢ > 1 for all local maxima A, € Z then (6.32) holds true. Assume therefore that
£ < 1 for some A, € Z. Inserting the definition of gi_; and using that 0 < p()) < 1
for A € 7, it follows from (6.33) that

A
5:2”0‘/2-—|*—> 2000|201
1220} 1_]Dk(’\*)_lpk()l | A

Consequently, cf. (6.18),
M| < e 28(0)| 712 < e [ A4l for every j =1,...,k. (6.34)

Since € < 1 this shows that A, is an interior point of the interval Z; being a local ex-
tremum of gx_, by construction this implies further that ¢;_,(A.) = 0. Straightforward

calculus yields
, Q-1 |, P
qk_lz—m( + k),

Apr - Apx
and hence,
A || ges(h)
(M) | Aepe(Al) ]

Substituting A, = (I — pe(AL))/qe—1(As) on the right-hand side and using (6.33) one
obtains

Pln) | g (A) |, [B0)] 1
30| O =20~ 2 a0 =)

and, since 0 < {(1 —¢) < 1/4 for 0 < ¢ < 1, this yields

ALY

g
Ape(Ae)| T &2

>

PO} - (6.35)

Note that, in view of (6.13)

H

e i N (o B o
/\pk()\)_z/\(/\—Aj'k)—.zz\j_k )\_)\j,k A _Z)\j.k/\_Aj.k.

j:l

Using (6.34), the inverse triangle inequality gives

(e = Akl 2 Ial0dnl = eldial) = (1 —e)A,,
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and hence,
ol 2,

= 1—¢

pi(A)
Api(A)

?lk
Combining this with (6.35) one obtains 8¢~ < 2(1 —&)~", which gives £ > 2(v/2 - 1).
From {6.33) therefore follows

1
<
—1-¢

s 1 S L O = 1242 0

which is somewhat stronger than {6.32). a

The remaining two preparatory lemmas are organized in much the same way as
Section 3.2. First, in Lernma 6.12, an estimate for the rate with which the residuals
decrease will be derived on the basis of the convergence analysis in Theorem 6.9.
Afterwards, in Lemma 6.13, an inequality for the ileration error in terms of the resid-
val norm and the modulus of pf(0) is given. The proof of the order-optimality of
the discrepancy principle in Theorem 6.15 amounts to an estimation of this second
derivative.

Lemma 6.12 Consider lhe iterates {28} of MR-11 with respect to some perturbed
right-hand side y°. If y € R(T) and k = oo then

lim sup ||y* —~ Tz < |ly — vl
k—o0

If y € R(T} satisfies Assumption 3.6 then, for2 <k < +1,

Iy — Till < Ny — oIl + elpi(0)| "+ 1/2

Proof. In the proof of Theorem 6.9 il has been shown, cf. (6.27), that
ly’ = Tl < NBrex (D)l

with @y as in (6.25) and k7 = Ey, , — Ey_,. In fact, this result has been established
there not only for y* € D(T1} but for any right-hand side y* € X. Furthermore, 2
has been shown to be a polynomial in /157, with no zero in T = (A_ 4, Ay ). It follows
that 0 < pp(A) £ 1 for A € Z, and hence,

ly* — Tfll < §Brea(T)(y° ~ )il + [ Eros(T)y| < Iy’ ~ yll + | Ezon(Thyll -
Since y = Tz for some z € X, (6.29) with v = 1 yields

1Ezou(TIyll = | Ezon(T) Tzl < clp(O) 2| Exall < clpf(0)[72||2]|,
108



where the right-hand side goes to zero as & — oo, cf. (6.19). This proves the first
claim.

If Assumption 3.6 is satisfied then y = T**'w for some w € X with ||Jw|| = w, and
one can apply (6.29} with » = g + 1. This yields

1Ezor(T)yll = | Bron(T)T*Hull < clpl(0)70172 | Bra

from which the second assertion follows. O

Lemma 6.13 Let y satisfy Assumption 3.6. Then the iteration error of MR-11 applied
to the perturbed right-hand side v satisfies

17Ty — il < e 4 p0)* ly — I (6.36)

for0 < k< w41, with
pi = max{ ||y’ — T=il|, lly — ¥°11} - (6.37)
Proof. For k = 0 and k = 1 one has z§ = 0 and (6.36) follows as in the proof of
Lemma 3.8. For £ > 2 let £ be such that
0 <e < |2p0(0)7Y2,
By virtue of (6.18) this implies that £ < |A;x], 7 =1,...,k. Let
P=FE —E._,

be the spectral orthoprojector for the interval (—¢,€]. As in the proof of Lemma 3.8
let

e =g (T)y,

so that z — & = pe(T)z for z = T'y. This gives rise to the,following estimate:

flz =2l < [Pz — 2Dl + I - Pz — D)l
< NPz — ) + |1Pe(@ — sl + e (T — Pe)(y — Tyl
< NP T)T*w|| + [| Pegemr (T)(y — )| + 67y — T}
< M¥Pe( M ey @ + ok 1 (A ey 1y — &)

+ 7Ny = T + ly - ¥°H)-

By construction of ¢, p; is bounded by one in [—¢,¢], and Lemma 6.11 provides a
bound for gx_; in the same interval. Using the definition (6.37) of pz, this gives

e — 23]l < e*w+ 267 pr + 21 (0)2 1y — o'l (6.38)
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Note that (6.38) coincides with (3.15) from the proof of Lemma 3.8, when replac-
ing |p%(0)] in (3.15) by 2|p#(0)|*/2. With this substitution in mind the remainder of
the proof of Lemma 3.8 can be copied almost word by word to obtain the desired
conclusion (6.36). Of course, pp must be estimated here by Lemma 6.12 instead of
Lemma 3.7. a

Note the pronounced role of |pf(0){!/% in the bounds for residual norm and iteration
error. However, unlike the sequence {|p}(0)|} whose elements had a similar role in the
previous chapters, the sequence {|pf(0)|'/?} need not increase monotonically:

Example 6.14 Let y = gv; + v,, where v; and v; are eigenvectors of T corresponding
to eigenvalues Ay = 1 and Ay = —1/2, respectively. In this case one has £ = 2, and

[p3, p3](| == 0 fOI'
pa(A) = (1= A’ (1 +2)) € IM3°.

Note that |pi{0)] = 6. The polynomial p, € JI® minimizing [p;, p2Jo must have the
form pa(A) = 1 — (A/A_2)%, and it is obvious that its negative zero A_, approaches
A2 = —1/2 as ¢ — 0. Hence, |pf(0)] = 8 for ¢ close to zero.

As will be shown next, this slightly different situation does not affect the order-
optimality of the discrepancy principle.

Theorem 6.15 Let y ¢ R(T) and assume that ||y—y?®|| < &. Then Stopping Rule 3.10
determines a finite stopping index {8} for MR-1I with

25 =Ty,  §-0. (6.39)
If in addition y satisfies Assumption 3.6 then

11y — ximii < ctfrtignintl (6.40)

Proof. If kK = oo then the existence of a finite stopping index k{6) follows from
Lerma 6.12. If « is finite then there is also a well-defined stopping index k(4) < k+1,
since [pesi, Pesio = |(I — P)y?||? < 6% for y € R(T). In the sequel, the argument §
in k() will be omitted for the ease of notation.

Assume first that y satisfies Assumption 3.6. Since & < k+ 1, Lemma 6.13 applies
and yields the following bound for the error at the stopping index:

Tty — zg]| < c(w!/PHge/e+t 4 |p(0)H2 ). (6.41)

If & <1 then p{(0) = 0, which implies (6.40) for this case. It remains to estimate p{/(0)
when k > 2. When £ > 2 Lemma 6.12 and Stopping Rule 3.10 yield

T8 < ||y5 — T:ci_1|| <d+ C|PJ’;-1(0)[7[#+])/2W,
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and hence,

(P2 (0)] < e(w/8)tt. (6.42)
Note that this is trivially fulfilled when k& = 2. {6.42) and (6.41) already imply (6.40)
in the case when ugfl_g(ﬂ) = 0 since then pi(0) = pi_1(0) by virtue of Lemma 6.4.
Therefore assume in the scquel that ugﬂg((}) # 0, in which case pgflg = uEﬁ? ugﬂz(ﬂ)
exists. In this final case the proof of (6.40) is much harder and shall be done in three
steps.

Step 1. The aim of the first step is to prove the existence of some constant ¢ > 0 with

1t Pk—1, Pr—
O < (/) + PenPiaky (6.43)
L2y Pr2]4

By assumption the right-hand side of (6.43) is well-defined, and
[Pl PhLala = b (01" 0kl e = (072
Therefore Lemma 6.4 yields the represéntation

|6#(0) — p_1 (0)]? = 4 [Pk-upfzi]o [:] (Px, Prlo <4 [p;;hpﬁillo
[Pilas Pio2la [Piz: Prlals
and (6.43) follows from (6.42) and the standard inequality

|k (0))* < 2(|p-1 (0)* + [£E(0) — pk_1 (O)F).

3

Step 2. Let T be the parameter occurring in Stopping Rule 3.10, and assume for the
moment that there are constants ¢; and ¢; with

0<eg <ep<7-1, (6.44)
such that the following holds: for some ¢ with
(e1 8/6) M < & < (g 8 fw)Ve 1, (6.45)
there is a polynomial ¢ € IT}°, with the following two properties:

¥ has no zeros in [—¢,¢],

B < e L], N 2 e (6.46)

The purpose of this second step is to show that

Pe—1, Pr-1o C(w/5)4/“+1[p,[:],g,}?,[:]_g 4, (6.47)

provided conditions (6.44) — {6.46) hold. These conditions will be established in the
third step.
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The proof of (6.47) is similar to the second step in the proof of Theorem 3.11. From
the optimality property of pi_; follows that

[Pr-1, il < [, 9o = | Pep(T)°* + (1 = P(T)eN? (6.48)
where, once again, P, denotes the spectral projector asscciated with the interval
(—z,e]). As o € I, and since ¥ has no zeros in [—z,¢], 0 < ¥(A) < 1 holds
true for A € [—z,¢|, and hence, using Assumption 3.6 and the second inequality in
(6.45), the first term on the right-hand side can be estimated by

12(T) Il < NPyl S NPT ]| + (| Pe(y’ = )l < Flw +8 < (e2 +1)4.

The second term on the right-hand side of (6.48) can be estimated with the second
condition in (6.46):

2
c
1 = BT < & 10 = PO, (TP < & [l L.
Inserting these two results jnto (6.48), one obtains

c+1
[Pr-1,Px-1l0 < (2T—2)( )+ [PE]zyPk 2ls

(Cz +

1
< 2 ) [Pk—lapk 1]0+ [pk 21pk412]41

where the latter follows from the definition of the stopping index k& = k(4). Note that
(¢z 4+ 1)/7 < 1 by assumption, <f. (6.44); hence, gathering terms one obtains a new
constant ¢ > 0 for which

[Pe-1,pi—io S ce? [Pk z,pi'*]g 4-

(6.47) now follows from the left-hand inequality for € in (6.43).

Step 3. In this step ¢, cg, £, and the corresponding polynomial 3 are constructed for
which (6.44) - (6.16) hold. Since |X;p—1| = (21 (0)])" Y2 forall 1 €5 < k-1, it
follows from (6.42) that there exists 0 < ¢ < 7 — 1 with

Apor] 2 4(ep /)54, j=1,...,k 1. (6.49)

Recall from Section 6.2 (namely from the discussion preceeding Lemma 6.7) that
all zeros p,r_o of pgﬂg (”L]m respectively) in [A. &, A; k] belong to the exceptional
set &x_z, and £ _, has at most two elements. The location of the elements of £,_,
determines the actual value of £ for which a polynomial ¢ satisfying (6.46) will be
constructed. ¢ is determined in such a way that the following condition holds true:

{Mef2< A <4e}nby =0, (6.50)
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Choosing € = (¢z §/w)'/**? the left-hand side of (6.50) is contained in [A_ 4, Ay ;] and
hence can contain at most lwo elements by virtue of (6.49). Therefore, if (6.50) is
not already satisfied for & = (¢ 8/w)/#+? then ¢ is subsequently replaced by £/8 and
¢/64, respectively, until the criterion (6.50) is finally met. Not more than two such
correction steps are necessary to determine a value of ¢ for which (6.50) actually holds
true, and this £ satisfies (6.45) with ¢; = ¢3/64. Note that ¢; and ¢; only depend on
7 and on the constant ¢ in (6.42}.
The polynomial ¢ is constructed from the following Ansatz:

(-l
HI;.:J.;!;‘HQFS'IE( A/pj}k-‘z)

P(A) = (6.51)

Recall that g;5_2, 7 = 1,...,k — 2, arc the zeros of p .. Consequently 3 is a poly-
nomial of degree & — 1 or lP‘ﬁ and 1 € T2, holds true, 1f and only if

1 1
"f:Pk2(0)+Z = -

iz —z|<ae fik-2 luj k—al>2e Hik=2

The zeros g, -z occuring on the right-hand side include all g5 2 € Ex.2, together
with those belonging to &_2 \ [—4e, 4<]. Since &, has not more than two elements,
the contribution to the right-hand side coming from those latter zeros is at most two
times 1/{4¢) in absolute value, whereas a bound for the contribution coming from
the remaining zeros p;r—2 ¢ Er—2 has been obtained in Lemma 6.7, cf. (6.15). Note
that & < x + 1, and hence k — 2 < « as required. In terms of the notation (6.14) of
Section 6.2 this yields the following bound for |vy|:

1 l
i k|} — < (6.52)

h|<l

where the last inequality follows from (6.49) and the construction of e. This shows
that the only zero of 4 which might belong to [—4e,4¢], namely A = 1/4 remains
outside the interval [—¢,e]. Thus, the first condition in (6.46) is satisfied for ¢ of
(6.51). It remains to check the second one. For this to hold, (6.530) turns out to be
crucial since it implies that a zero uj;_2 in [—4e,4¢| must at the same time belong to
the smaller interval [—£/2,¢/2], and hence,

O I Y

1 —
| Bik-2  |dik-2) ~g/2

Consequently, it follows from (6.51) that

(0] < 11— L, ()] < 3L 0 )rngl ;;’*1, A ze.  (653)
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The fanction ¢(A) = A7#(1 — 7A) has a pole at A = 0 and tends to zero as |A| = oo;
besides, it has one local extremum at A = 2/v. In view of (6.52) this implies that

1+|7|£ s 2

I{}\'\l&?'%(A)J = max{|g(—¢)l, [p(e)l, lp(2/V)} = max{——— I} S3

Inserting this into (6.533) the desired inequality in (6.46) follows.

Final Step. Having now established the assumptions for the second step, (6.47) can
be inserted into (6.43) which yields

IPO)P < elwf8)+, (6.54)

Thus the assertion (6.40) follows from {6.41) and (6.54).
The convergence of zi -+ Tty as § — 0, if y € D(TT) does not satisfy Assump-
tion 3.6, can be proved as in Theorem 3.12. O

The similarity of the above analysis to the one in Section 3.2 suggests the heuristic
that, up to a multiplicative constant,

1Ty — il ~ 16O ly" - T3] -
As in Section 3.4 this is the motivation for the following heuristic stopping rule:

Stopping Rule 6.16 Compute
m=m= Wl = WO - Tl k22, (6.55)

and terminate the MR-l iteration after k(y®) steps, provided Nty < e for all
0<k<k+1.

Note that pf(0) is easily updated in the course of the iteration by using the recursion

(6.11), i.e.,
P (0) = p(0) — 20l (0) .
i4]

The numbers u;” {0} in turn can be computed from (6.10):

W (0) = —od®(0) - Bl (0), W00) =@, (0)/84s, K20,

starting with u™l(0) = 0 and u[él( 0) = 1/8s.

It is left to the reader to verify the assertions of Theorem 3.14, Corollary 3.15 and
Theorern 3.16 for this stopping rule. The proofs from Section 3.4 extend immediately
in view of Lemmas 6.12, 6.13, and the estimate (6.54) for |p{i5(0)] at the stopping
index of the discrepancy principle.
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6.5 Estimates for the stopping index

It is the aim of the following considerations to provide tools for a comparison of the
efficiency of MR-1I, mainly as compared to CGNE, but also as compared to MR. Al
these methods minimize the residual norm in certain Krylov subspaces. The first result
is a straightforward consequence of this ohservation.

Proposition 6.17 Let T be sclfadjoint, indefinite, and denote by ki and ko the stop-
ping indices of the discrepancy principle (Stopping Rule 3.10) for MR-1I and CGNE,
respectively. Then one has 2ky < ko. If, in addition, T is semidefinile, and ko is the
corresponding stopping index of MR, then ky < ky.

Proof. Recall that zo = 0 by convention. By Proposition 2.1, and by the definition of
MR-, the kth iterates = of MR (for semidefinite problems only), MR-1I, and CGNE,
respectively, minimize the residual ||y — Tzi]] in the Krylov subspaces

Ko(k) = Kiea(yi T, Ki(k) = Kieo Ty T), - Ka(k) = Koa (T T7).

Since

Ki(k) C Ko(k)  and  Ka(k) C K (2K),

the claim follows from the definition of the stopping rule. O

This. allows the following important conclusion: as MR-II requires at most twice
as many iterations than CGNE, with each MR-II iteration being approximately half
‘as cxpensive as one CGNE iteration (at least as far as multiplications with T are
concerned), MR- seems Lo be the method of choice for indefinite problems.

Since quantitative estimates for k(d) are known for CGNE (cf. the final remark in
Section 5.1), Proposition 6.17 can not only be used for comparison, but also to obtain
bounds for the stopping index k() of MR-IL

Corollary 6.18 Let |ly — v®|| < & and k(8) be the stopping indezx for MR-11 as deter-
mined by Stopping Rule 3.10. If y satisfies Assumption 3.6 then

k(8) < c(w/8)Me+

1If, in addition, T is a non-degenerate compact operator with eigenvalues |A;| = O(77%)
for some a > 0 and §j — oo, then

k(8) < c(w/8)Y/rDles1)
If the eigenvalues of T' decay in absolute value like O(¢?) as j — oo with g < 1 then

B(O) <c(l+ log"'(w/é)).
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The remainder of this section is concerned with the question what conditions are
in favor of MR-II as compared to CGNE. To this end consider the following two quite
general case studies.

Example 6.19 Let d|| £,y°||> be symmetric with respect to the origin. Clearly, this
implies that A2dij Exy?||? is also symmetric. It is known (compare [9, Theorem 1.4.3])

that the corresponding orthogonal polynomials uE]

are cven for & even, and odd for
k odd. Since all roots of uf] are simple it follows that

w0} £0,  wbl(0)=0, ke Ng.

Consequently, for every k € Ny there is a multiple pi) € 79 of ul2l which satisfies

[5h,pls =0 for every p € Hges .

Hence, by virtue of Proposition 6.1, the residual polynomials {p.} of MR-II are given
hy
P2k = Poit1 = ng;g, ke Ng.

In other words, for every £ € INy the two consecutive iterates za; and xeryy coincide,
and the iteration polynomials gz = (1 — pz)/A are all odd. This shows that

Tok, Takt1 € }Ckfl(Ty;Tz)u

and hence, xyy and z944, coincide with the kth iterate of CGNE. In other words, in this
situation the upper bound for the stopping index of MR-11I as given in Proposition 6.17
1s aktained.

The second example considers the situation where T is almost positive definite.

Example 6.20 Assume that y satisfies Assumption 3.6, and 7" has just finitely many
ncgative cigenvalues
A< A< <A <DL

Here, r may be any nonnegative integer; in particular, when r = 0 then T is semidef-
inite, and ene may be interested in comparing MR-1I with MR. Let

r A
wr()‘) = g(l - )‘_])’

and define L,GE?L by (5.2) as a Jacobi polynomial of degree & — r with v = 24 + 2;
similarly, let g.o,[,fl,_l be the corresponding Jacobi polynomial (5.2) of degree b —r — 1
with v = 24 + 4. Consider the following comparison polynomial of degree k:

p =0 (0 —mrel, ). (6.56)
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Here, 4 is chosen so as to have p € T, i.c.,
e = $L(0) + 1, (0).
Consequently, as shown in Lemma 4.6, (¢1e),
el ~ K, koo, (6.57)
Since v, is bounded on [0, 1], it follows that
(N < el g+ e brel M0, oy, 0 AT,
and inserting (3.3) and (6.57) this yields
[N Hp(A)| € (kL 1)7% 2 0< A< (6.58)
Since p vanishes on all negative eigenvalues of T, it follows that
Il = Ip(1) T ] < ol + 1),

It is not difficult to scc that (6.58) implies a uniform upper bound for p on {0,1],
independent of &, although this bound need not be 1 as in all former examples.
Nevertheless, this implies that after approximately (w/8)/#+2 iterations the residual
ly® — Txill of MR-11 will already be of the order of 4. Note that this is about the
sarre estimate as has been obtained for MR in Theorem 5.1. Consequently, when 7' is
semidefinite then one may expect similar error histories for MR and MR-IL.

The conclusion is the following. If the spectral mass of y® splits into similar com-
ponents corresponding to negative and positive parts of the spectrum of T' then little
gain may be expected from using MR-11 instead of CGNE. Here, “similar components”
refers to approximately equal mass, equal clustering properties of eigenvalues, and
cqual asymptotics for the decay of spectral contributions near both sides of the ori-
gin. See Section 6.7 for such an example; the numerical experiments nevertheless show
a substantial improvement by using MR-II instead of CGNE.

On the other hand, if a dominating portion of the spectral mass is located on
one side of the origin then MR-II may be up to an order of magnitude faster than
CGNE. For certain speciral distributions one can expect about the same improvement
as when using MR instead of CGNE for semidefinite problems. To some extent this can
be exemplified with the image reconstruction problem of Section 5.3. Although the
continuous problem is positive definite, the discretized problemn is symmetric indefi-
nite. However, being an approximation for a definite problem, the negative spectral
elements only contribute to some minor extent. Numerical examples for this problem
are given in the following section.
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6.6 The image reconstruction problem

Consider the deconvolution problem from Section 3.3. The operator 7' in (5.16) is self-
adjoint because of the symmetry of the kernel function k of (5.17), and the spectrum
of T is given by the values of the Fourier transform of h, namely by the values of

i T L 2

h(o,T) ” exp( 4X(O' +7%))
over R?. It follows that T is positive definite and ||T|| = 7/x.

Although the symmetry is maintained in the simple discretization of Section 5.3,
the resulting matrix A of (5.18) is indefinite, cf. Figure 6.2. The recason is that the
spectrum of the discretized operator 1s more related to the oscillating Fourier trans-
form of the truncated point spread function rather than to the Gaussian presented
above.

The discrete problem (3.18) is a first example of a selfadjoint and indefinite prob-
lem. Note that the distribution of the eigenvalues is nol symmetric. Although most of
the spectrum is within an interval {—2.66,2.66), there are about 300 out of the 4096
eigenvalues of A which dominate the positive part of the spectrum, cf. Figure 6.2.
One may therefore expect that the spectral contribution coming from the positive
eigenvalues dominates the contribution from the negative eigenvalues, which is likely
to be in favor of MR-II.

This is confirmed by the numerical results for MR-1I and CGNE shown in Tables 6.1
and 6.2 which correspond to exactly the same experiments as in Section 5.3. Recall
that the entries of the two tables represent averages over all twenty runs; as in Sec-
tion 5.3 the individual results agree very well with these averages. 1t can nicely be
seen that the numbers in Table €.1 are almost the same for both methods (whether
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1% noise 0.1% noise

opt. ord. heu. opt. ord. heu.

MR-II 0.1454 0.1610 0.2452 0.0755 0.0909 0.0811

CGNE 0.1452 0.1606 0.2514 0.0753 0.0915 0.081]

Table 6.1. Average (relative) error norm

1% noise 0.1% noise
opi. ord. heu. opt. ord. hen.
MR- 201 9.0 20 1328 542 772
CGNE 26.3 13.0 2.0 166.1 068.6 96.8

Table 6.2. Average iteration count
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Fig. 6.3. Iteration error for MR-1T and CGNE

119



they correspond to the optimal stopping index or to one of the stopping rules). On the
other hand, the iteration counts listed in Table 6.2 are significantly better for MR-11.
The improvement from about 166 to 133 iterations in the case of 0.1% noisc may
nol seem dramatic on the first glimpse, however, in view of the fact that one CGNE
iteration rcquires two matrix vector multiplications instead of one, the use of MR-II
results in a speedup of more than a factor of two. This is illuminated by Figure 6.3
which contains a plot of the error history for two particular right-hand sides (with 1%
and 0.1% noise, respectively) versus the number of matrix vector multiplications.

6.7 The sideways heat equation

The second test example 1s concerned with determining an inaccessible surface tem-
perature of a body given measurements of the temperature inside the body. Physical
examples include the determination of the surface temperature of a space vehicle
reentering the earth’s atmosphere, and the determination of the temperature within
a reactor from thermocouples huried inside the wall, close to the wall’s inrer surface.

The numerical experiments that are described in the sequel deal with a simple 1D
model problern, namely

Uy = Usgs, 0<s<oo Dt <o,
u(s,0) =0, 0<s <o,

where the temperature y = w(l,-) € L%R7T) is known (i.e., measured), and the
temperature u(0,t), { > 0, at the boundary is sought. In order to guarantee well-
posedness ol the corresponding direct problem (where the boundary temperature is
given and w(1,t) is sought) it is assumed that the temperature u remains bounded in
the quarter plane s > 0, ¢ > 0, cf., e.g., [8, Chapter 4].

The solution z = u(0,-) of the above sideways heat equation can be determined
from a Volterra convolution equation of the first kind, cf. 8],

y(t) = (K2)(1) = f; Bt~ )2 ()t (6.59)

with kernel function

h{t) = 2\%1&‘3/? exp(— 417)’ 0<t<l.
The interesting feature of this example is the fact that K is a compact operator with
rapidly decreasing singular values becausc h vanishes exponentially at the origin.
Assume that there are given n discrete measurements y(t,,) at equidistant time
steps tn € [0,1], | € m < n. For simplicity let n be even. Simple collocation with
piecewise linear gsplines leads to a nonsingular linear system Ax = y with a lower
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triangular Toeplitz matrix A. In principle one could do a siinple forward solve to
compute X irom y but this is an extremely unstable procedure since the diagonal pivot
elements of A are given by h(¢;/2), and hence, these pivots are almost numecrically
zero because of the very slow incrcase of A near the origin.

Although A is not symmetric, it can easily be transformed into a symmetric matrix
by flipping A in the up/down direction. The resulting matrix H is a Hankel matrix,
i.e., constant along counter-diagonals, with a large zero block of dimension n/2 x n/2
in the lower right corner. As a matter of fact, H is indefinite with precisely n/2 positive
and negative eigenvalues, respectively, cf. [44]. It is easy Lo see that the eigenvalues of
H coincide with the singular values of A in absolute value.

Permuting y in the same way {which gives b, say), the vector x solves the linear
system

Hx=b, (6.60)

and MR-1I can be used for computing regularized approximations of x. Since Hx is just
a permutation of Ax it is clear that onc could apply FFT techniques for implementing
multiplications by # with only O{nlogn) operations, cf. [38]; for smaller values of n
standard matrix vector multiplication is faster, though.

In the present example, taken from [15] and implemented in routine heat of [41],
« 1s piecewise continous,

ERa 0<t<1/10,
3 _9\(3_ 9 <

2(t) = ;;Eﬁi} 2)(3 - 20¢), 1/10 < t < 3/20,
1€ ) 3/20 <t <1/2,
0, 1/2<1<1.

The dimension of H is 128 x 128. The mass points of the discrete inner product [-,-],
are shown in Figure 6.4: each line represents an cigenvector component of b at an
eigenvalue of H. Essential parts of the total spectral mass are on both sides of the
origin, although the spectrum of I7 itself is not symmetric.

The experimental setting, i.e., generation of noise, number of experiments, and
so forth, 1s the same as in Section 5.3. Thus, there are twenty experiments for two
different noise levels, cach, with the resulting average errors and iteration counts
displayed in Tables 6.3 and 6.4. As in the example from the previous section, the best
approximations by MR-1I and CGNE have about the same accuracy. In fact they are
very close themselves as can be seen from Figure 6.5, in particular when looking at
the zoomed details in the right-hand side plot.

The stopping rules perform slightly better for CGNE. In view of the discussion in
Section 6.5 it is somewhat surprising that the iteration counts for MR-II and CGNE
arc almost the same. This is probably due to the fact that the eigenvalues are not
completely symmetric with respect to the origin, and therefore fi* has about the
same number ol isclated dominating eigenvalues as H. This observation is somehow
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supported by the technique of proof for Theorem 5.2 concerning the estimation of the
stopping index k(§) for compact operator equations.

As a vonsequence, CGNE is about lwice as expensive as MR-IT for this example;
this is illustrated by Figure 6.7 where the relative error history is ploited versus the
number of matrix vector products in the case of 0.1% noise.

Finally, it is worthwile to comment on the differences to the image reconstruction
example where the underlying operator has not been compact. It is obvious that far
less iterations are required for the present example, and the accuracy is nevertheless
better. Although the degree of smoothness of the true solution (as measured by As-
sumption 3.6) is not known in either example, the numbers support to some extent
the result that conjugate gradient type mcthods need fewer iterations for compact
operator equations.

In the sideways heat equation problem the heuristic stopping rules for CGNE and
MR-1I lead to approximations which are worse than the optimal approximations by
a factor of about two, whereas the order-optimal stopping rules are somewhere in
between. This is worse than in the image reconstruction problem. Nonetheless, as can
be seen from Figure 6.8, the error approximations 7 on which the heuristic stopping
rule is based, cf. (6.53), follow the truc errors fairly well. In fact, the stopping indices
for the heuristic rules were never that unrealistic as in the third colnmn of Table 6.2

Summarizing, MR-11 is a more cfficient meihod for indefinite problems, even when
the spectral measure seems to be fairly symmetric with respect to the origin. Properly
interpreted, both stopping rules give reasonable results. The heuristic rule is less
robust, though, and its performance strongly depends on the underlying problem. Of
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1% noise 0.1% noise

opt. ord. hen. opt. ord. heu.

MR-i] 0.10622 0.1439 0.2158 0.0369 0.0489 0.0725

CGNE 0.1026 0.1350 0.2035 0.0373 0.0478 0.0713

Table 6.3. Average (relative) error norm

1% mnoise 0.1% noise

opt. ord. heu. opt. ord. Theu.

MR-11 15.7 110 9.0 284 207 179

CGNE 13.9 109 R.0 27.9 202 16.0

Table 6.4. Average iteration count

matrix vector products

Fig. 6.7. [teration error of MR-11 and CGNE for 0.1% noise
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course, this should be expected as it is primarily based on heuristic assumptions which
in some examples may make more sense than in others.



Notes and remarks

Section 6.1. The original implementations of MR and MR-II for indefinite problems
were developed by PAIGE and SAUNDERS [64]. The ORTHODIR implementation of MR
is described in more detail in HACKBUSCH (32, Sect. 9.5.3] and in FISCHER [18]. The
name ORTHODIR was introduced by YOUNG and JEA [84].

The idea of choosing approximations from the Krylov subspace (6.2) originates
with a paper by FRIDMAN [21}, and has been further recommended in [64] in the
context of singular algebraic equations with incompatible right hand side. The MR-1I
implementation in [64] is significantly different from Algorithm 6.1. The presentation
as given here follows {19].

As mentioned right above, the use of residual polynomials py with pi(0) = 0 has
some tradition in the context of singular linear matrix equations. This is so because
“incompatible” components of the right-hand side are amplified during the iteration
by —p(0), which typically diverges to infinity. Hence, stipulating p}(0) = 0 provides
a way to prevent divergence; compare [19] and references therein.

Section 6.2. Inierlacing properiies for the roots of linear combinations of two con-
secutive orthogonal polynomials are classical, cf. SZEGO [76, Theorem 3.3.4]. Linear
combinations of three consecutive orthogonal polynomials were studicd by MICCHELLL
and RIVLIN {35]. The proof of Proposition 6.6 uses the technique of [55].

Section 6.3. It remains an open problem whether the iteration error of MR-11 decays
monotonically for y € D(T1). It is for this reason that the proofs of Theorem 6.9 and
Theorem 3.4 are completely different. The proof of Theorem 6.9 is more related to
the convergence analysis of MR as given by NEMIROVSKII and POLYAK [59].

Section 6.4. O’LEARY and SIMMONS [61] mention the possibility of regularizing
indefinite problems by Lanczos tridiagonalization, which would be equivalent to the
MR method. However, there is no theoretical justification of this approach in the
litcrature.

Section 6.5. Similar estimates have been given by FREUND [20] for conjugate gra-
dient type methods for well-posed indefinite problems.

Section 6.7. ELDEN’s paper [15], where this particular example z(¢) has been used
for numerical experiments, contains a nice survey of regularization techniques for the
sideways heat cquation. The idea to transform the problem into a linear system with
a Hankel matrix is taken from a paper by EKSTROM and RHOADS [14], see also
O’LEARY and SIMMONS [61].

126



References

. M, ALIFANGV AND S, V. RUMJANCEV, On the stability of {terative methods for the

solution of linear ill-posed problems, Soviet Math. Dokl., 20 (1979), pp. 1133-1136.

. ANGER, R. GorenrLO, H. JockMmanw, H. MoriT2, AND W. WEBERS, eds.,

Inverse Problems: Principles and Applications in Geophysics, Technology and
Medicine, Berlin, 1993, Akademie Verlag.

. ASKEY, Orthogonal expansions with positive coefficients, Proc. Amer, Math. Soc.,

16 (1965), pp. 1191-1194.

. B. BAKUSHINSKIL, Remarks on choosing o reqularization parameter using the quasi-

optimality and ratio criterion, USSR Comput. Math. and Math. Phys., 24,4 (1984),
pp. 181-189.

BAUMEISTER, Stable Solution of Inverse Problems, Friedr. Vieweg & Sohn, Braun-
schweig, 1987.

. BRAKHAGE, On ill-posed problems and the method of conjugate gredients, in Inverse

and Ill-Posed Problems, H. W. Engl and C. W. Groetsch, eds., Boston, New York,
London, 1987, Academic Press, pp. 165-173.

. CALVETTI, L. REICHEL, AND Q. ZHANG, Conjugate gradient algorithms for sym-

metric inconsistent linear systems, in Proceedings of the Lanczos International Cen-
tenary Conference, J. D, Brown, M. T. Chu, D. C. Fllis, and R. J. Plemmons, eds.,
Philadelphia, 1994, SIAM, pp. 267-272.

. R. CanNonN, The One-Dimensional Heat Fquation, Addison-Wesley, Reading, MA,

1984,

T. S. CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, Sci-

ence Publishers, New York, 1978.

[10) ——, Orthogonal polynomials and measures with end point musses, Rocky Mountain

[11] E.
[12] V.

[13] B.

[14] M.

J. Math., 15 (1985), pp. 705-719.
J. Crala, The n-step tteration procedures, J. Math. Phys., 34 (1955), pp. 64-73.

DRUSKIN AND L. KNiZHNERMAN, Frror bounds in the simple Lanczos procedure for
computing functions of symmetric matrices and eigenvalues, Comput. Math. Math.
Phys., 31,7 (1991), pp. 20-30.

Eickr, A. K. Louvis, aND R. PLATO, The instability of some gradient methods for
ill-posed problems, Numer. Math., 58 (1990), pp. 129-134.

P. ExksTroM AND R. L. RHOADS, On the application of eigenvector ezpansions to
numerical deconvolution, J. Comput. Phys., 14 {1974), pp. 319-340.

127



[13):
[16]

[17]

[18]

[19]

{20]

(21]

[22]

(27]

28]

[29]
[30]
[31]
[32]

128

L. ELDEN, Numerical solution of the sideways heat equation, to appear in [17].

II. W. ENGL, Regularization methods for the stable solution of inverse problems, Sur-
veys Math. Indust., 3 (1993), pp. 71-143.

H. W. EnGL aND W. RUNDELL, eds., fnverse Problems in Diffusion Processes,
Philadelphia, 1995, SIAM, to appear.

B. IiscHER, Orthogonal polynomiels and polynomial based iteration methods for indef-
inite linear systems, Habilitationsschrift, Universitdt Hamburg, Hamhurg, 1993.

B. FiscHEr, M. HaNKE, aND M. HOCHBRUCK, A note on conjugate-gradient iype
methods for indefinite and/or ineonsistent linear systems, submitted.

R. FREUND, Uber einige CG-dhnliche Verfahren :ur Lésung linearer Gleichungs-
systeme, Dissertation, Universitit Wiirzburg, Wiirzburg, 1984.

V. M. FrIDMAN, The method of minimum iterations with minimum errors for a system
of lincar algebraic equations with o symmetrical matriz, USSR Comput. Math. and
Math. Phys., 2 (1963), pp. 362-363.

S. F. GiLyazov, flerative solution methods for inconsistent operator equations, Moscow
Univ., Comput. Math. Cybernet., 3 {1977}, pp. 78-84.

——, Regularizing algorithms based on the conjugaie gradient method, USSR Comput.
Math. and Math. Phys., 26,1 (1986), pp. 8-13.

, Methods for solving linear ill-posed problems, Moskov. Gos. Univ., Moscow, 1987.
In Russian.

G. H. GoLus aND D. P. O’LEARY, Some history of the conjugate gradient and Lanc-
zos algorithms: 1948-1976, SIAM Rev., 31 {1989), pp. 50-102.

G. H. Gorur anp C. I'. Van LoaN, Matriz Computations, The Johns Hopkins
University Press, Baltimore, London, 1989.

A. GREENBAUM, Behavior of slightly perturbed Lanczos and conjugate-gradient recur-
rences, Linear Algebra Appl., 113 (1989), pp. 7-63.

A. GREENBAUM AND 7. STRAKOS, Predicting the behavior of finite precision Lanc-
z0s and conjugate gradient computations, STAM J. Matrix Anal. Appl., 13 (1992),
pp- 121-137.

C. W. Grourscu, Generalized Inverses of Linear Operators, Marcel Dekker, Inc., New
York, Basel, 1677,

——, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind,
Pitman Publishing, Boston, London, Melbourne, 1984,

M. H. GUTKNECHT, Changing the norm in conjugate gradient type algorithms, 3IAM
J. Numer. Anal., 30 {1993), pp. 40-56.

W. HackBuscH, fterative Selution of Large Sparse Systems of Fquations, Springer-
Verlag, New York, Berlin, Heidelberg, 1994.



[33] J. HADAMARD, Lectures on Cauchy’s Problem in Linear Partial Differentiol Equations,
Yale University Press, New Haven, 1923.

[34] M. HANKE, Accelerated Landweber iterations for the solution of ill-posed equations,
Numer. Math., 60 (1991), pp. 341-373.

[35] , The minimal error conjugate gradient method is a regularization method, to ap-
pear in Proc. Amer. Math. Soc.
[36] , Asymptotics of orthogonal polynomials and the numerical solution of ill-posed

problems, to appear in Ann. Numer. Math.

{ . FIANKE AND H. . ENGL, An eptimal stopping rule for the v-met or soluing

37 M. H H. . W. E A imal ] { h hod {vi
ill-posed problems using Christoffel functions, J. Approx. Theory, 79 {1994), pp. 89-
108,

[38] M. IIANKE aND P. C. HANSEK, Regularization methods for large-scale problems, Sur-
veys Math. Indust., 3 (1993). pp. 253-315.

[39] M. HanNKE, J. G. NAGY, aND R. J. PLEMMONS, Preconditioned iterative requlariza-
tion for ill-posed problems, in Numerical Linear Algebra, L. Reichel, A. Ruttan, and
R. 8. Varga, eds., Berlin, New York, 1993, de Gruyter, pp. 141-163.

[40] M. Hanke anp T. Raus, A general heuristic for choosing the reqularizaetion parameter
in ill-posed problems, submitted.

[41] P. C. HanseN, REGULARIZATION TOOLS: A MATLAB package for analysis and solution
of discrete ill-posed problems, Numer. Algorithms, 6 (1993), pp. 1-35.

[42] ——, Ezperience with regularizing CG iterations, to appear in BIT.

[43] R. M. HavEs, lterative methods of selving linear problems on Hilber! space, in Contri-
butions to the Solution of Systems of Linear Fquations and the Determination of
Eigenvalues, O. Taussky, ed., Washington, 1954, Nat. Bur. Standards. Appl. Math.
Ser. 39, pp. 71-103.

[44] E. V. HaynswoRTH anD A. M. OsTROWSKI, On the inertia of some classes of par-
titioned matrices, Linear Algebra Appl., 1 (1968), pp. 299-316.

[45] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear
systems, J. Research Nat. Bur. Standards, 19 (1952), pp. 409-436.

[46]) W. J. KAMMERER AND M. Z, NasHED, On the convergence of the conjugate gradient
method for singular linear operator equations, SIAM J. Numer. Anal., 9 (1972),
pp. 165-181.

[47) J. T. KiNG, A minimal error conjugate gradient method for ill-posed problems, J.
Optim. Theory Appl., 60 (1989), pp. 297-304.

[48) T. H. KOORNWINDER, Orthogonal polynomials with weight function (1—z)*{(1+z)? +
mé{x + 1) + né(z — 1), Canad. Math. Bull., 27 (1984), pp. 205-214.

[49] R. L. LAGENDUK AND J. BIEMOND, lterative Identification and Restoration of Images,
Kluwer, Boston, Dordrecht, London, 1991.

129



[80] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Re-
search Nat. Bur. Standards, 49 {1952}, pp. 33-53.

[51] L. J. LarDY, A cless of iterative methods of conjugate gradient type, Numer. Funct.
Anal. Optim., 11 (1990), pp. 283-302,

52] A. S. LEoNoOV, On the choice of regularization parameters by means of the quasi-
g
optimality and ratio criteria, Soviet Math. Dokl., 19 (1978), pp. 537-540.

[533] A. K. Louis, Cenvergence of the conjugate gradient method for compact operators, in
Inverse and Ill-Posed Problems, H. W. Engl and C. W. Groetsch, eds., Boston, New
York, London, Tokyo, Toronto, 1987, Academic Press, pp. 177-183.

[64] ——, Inverse und schlecht gestellte Probleme, B.G. Teubner, Stuttgart, 1989,

[55] C. A. MiccHELLl aND T. J. RivLIN, Numerical integration rules near (GGaussian
quadrature, Israel J. Math., 16 (1973), pp. 287-299,

[56] V. A. Morozov, On the solution of funetional equations by the method of regulariza-
tion, Soviet Math. Dokl., 7 (1966), pp. 414-417.

[57] F. NATTERER, The Mathematics of Computerized Tomography, Wiley, Chichester, New
York, Brisbane, Toronio, Singapore, 1986.

[58] A. S. NEMIROVSKII, The regularization properties of the adjoint gradient method in
ill-posed problems, USSR Comput. Math. and Math. Phys., 26,2 (1986), pp. 7-16.

[59] A. S. NEMIRQVSKII AND B. T. PoLvaK, lterative methods for solving linear ill-posed
problems under precise information [, Engrg. Cybernetics, 22,3 {1984}, pp. 1-11.

[(60] Y. NoTaY, On the convergence rate of the conjugate gradients in presence of rounding
errors, Numer. Math., 65 (1993}, pp. 301-317.

(61] D. P. O’LeaRry AND J. A. SiMMoONs, A bidiagonalization-regularization procedure for
large scale discrelizations of ill-posed problems, STAM J. Sci. Statist. Comput., 2
(1981), pp. 474-489.

(62] C. C. PaiGE, Bidiagonalization of matrices and solution of linear equations, SIAM J.
Numer. Anal., 11 (1974), pp. 197-209.

[63] ——, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matriz,
J. Inst. Math. Appl., 18 (1976), pp. 341-349.

[64] C. C. Paice anD M. A. SAUNDERS, Solution of sparse indcfinite systems of linear
equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629.

[65] ——, LSQR: an algorilthm for sparse linear equations and sparse least squares, ACM
Trans. Math. Software, 8 (1982), pp. 43-71.

[66] L. PAIVARINTA AND E. SOMERSALO, eds., Inverse Problems in Mathematical Physics,
Berlin, Heidelberg, 1993, Springer.

67] R. PrLaTo, Optimal algorithms for linear ill-posed problems yield regularization meth-
g
ods, Numer. Funct. Anal. Optim., 11 (1990), pp. 111-118.

130



[68]
(69]
[70]

[71]
[72]

[73]

[74]

[78]

[79]

, Uber die Diskretisierung und Regularisierung schlecht gestellier Probleme, Dis-
sertation, TU Berlin, Berlin, 1990.

T. Raus, The principle of the residual in the solution of ill-posed problems with non-
selfadjoint operator, Tartu Riiki. Ul. Toimetised, 715 (1985), pp. 12-20. In Russian.

J. B. READE, Eigenvalues of positive definite kernels, SIAM J. Math. Anal., 14 (1983),
pp. 152-157.

F. Rigsz aAND B. Sz.-Naay, Functional Analysis, Ungar, New York, 1955.

P. C. SABATIER, ed., Inverse Mcthods in Action, Berlin, Heidelberg, New York, 1990,
Springer Verlag.

V. E. SHamanNsKI, On certain numerical schemes for iteration processes, Ukrain. Mat.
Zh., 14 (1962), pp. 100-109. In Russian.

E. STierEL, Relazationsmethoden bester Strategie zur Lésung linearer (leichungs-
systeme, Comment. Math. Helv., 29 (1955), pp. 157-179.

Z. STRAKOS, On the real convergence rate of the conjugate gradient method, Linear
Algebra Appl., 154-156 {1991), pp. 535-549.

G. SzeGO, Orthogonal Polynomials, Amer. Math. Soc. Collog. Publ., Vol 23, Amer.
Math. Soc., Providence, Rhoede Island, 1975.

A. N. TikHoNOV, Solution of incorrectly formulated problems and the reqularization
method, Soviet Math, Dokl., 4 (1963), pp. 1035-1038.

A. N. TikHoNov aAND V. Y. ARSENIN, Solutions of Ill-Posed Problems, John Wiley
& Sons, New York, Toronto, London, 1977,

A. N. Tiknonov, A. S. Leonov, A. [. PrRILEPKO, 1. A. Vasin, V. A. VaTuTIN,
AND A. G. YAGOLA, eds., {ll-Posed Problems in Natural Sciences, Utrecht, Moscow,
1692, VSP BV/TVP Sci. Publ.

W. I'. TreENnCH, Proof of a conjecture of Askey on orthogonal expansions with positive
coefficients, Bull. Amer. Math. Soc., 81 {1975), pp. 954-956.

H. TriEBEL, Interpolation Theory, Fumclion Spaces, Differential Operators, North-
Holland, Amsterdam, New York, Oxford, 1978.

G. M. VAINIKKO AND A. Y. VERETENNIKOV, lteration Procedures in Ili-Posed Prob-
lems, Nauka, Moscow, 1986. In Russian.

M. YamacuTi, K. Havakawa, Y. Iso, M. Mori, T. NisHiba, K. TOMOEDA, AND
M. YAMAMOTO, eds., fnverse Problems in Engineering Sciences, Tokyo, Berlin,
Heidelberg, 1991, Springer Verlag,

D. M. Young anD K. C. JEA, Generalized conjugate-gradient acceleration of non-
symmetric iterative methods, Linear Algebra Appl., 34 (1980), pp. 159-194.

131






Index

a priori
— information 2, 40
— stopping rule 28

Banach-Steinhaus theorem 37, 39

G 13, 24, 57,73
CGME 17, 26, 57, 76
cGNE 17, 26, 35, 76, 115
Christoffel-Darboux identity 20
compact operator 28, 75, 83, 115, 120
conjugate gradient type method 9, 91
— breakdown 11
- finite termination 11, 94
- optimality property 11, 92
conjugate residual method 33
convergence 37, 57, 102
— arbitrarily slow 39
- modulus 40, 100
- monotone 36, 57, 126
- rate 44

saturation 68, 71
convolutlen 82, 120

discrepancy priaciple 46, 110
— failure 60

discretization 55

divergence 38, 58, 106

encrgy norm 14
FFT 121
generalized inverse 5

IMankel matrix 121
Hilbert-Schmidt operator 77

ill-posed problem 1
image reconstruction 82, 118
indefinite operator 91, 118, 121

initial guess 7, 18
integral equation 40, 76, 82, 120

interlacing property 19, 21, 97, 98

interpolation inequality 40
iteration polynomial 7

Jacobl polynomials 9, 61, 74, 75, 78, 117

kernel polynomials 12, 19
Krylov subspace 7

Lanczos process 27, 94, 126
LSQR 27

Mercer’s theorem 76
MINRES 27

moments 29

MR 13, 24, 35, 73, 96, 115
MR-11 91

v-method 9, 71
normal equation 16
- damped 2

order-optimal 2
ORTHODIR 96

orthogonal polynomials 9, 19, 93

- zeros 18, 21, 97, 98

- loss of orthogonality 27

— nonnegative expansion 35
three-term recurrence 8, 94

perturbation

—data 1

— operator 35

point spread function 82

regularization 1

— discontinuous 29
- nonlinear 40

- parameter 1, 3

133



reorthogonalization 27
residual 8

- lack of monotonicity 58
residual polynomial 8
~zeros 18, 97
Riemann-Lebesgue lemma 83

saturation 66, 71

semiconvergence 3, 45

semiiterative method 9

sideways heat equation 120

singular values 77

smoothness assumption 40

spectral family 5

stability

- data perturbations 27
round-off 27

stopping index

— cstimates 73, 115

slopping rule 3, 46, 31, 66, 69, 114

— a priori 28

- heuristic b0, 53

S5YMMLG 27

‘'ikhonov regularization 2, 40, 55, 66
Toeplitz matrix 83, 121
truncated spectral expansion 14, 50

weight function
- points of increase 11, 92
— symmetric 91, 116

134



